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1. Introduction

The study of logic stretches from the fundamen-
tal classical 2-valued or Boolean logic to the study of
the most general multi-valued logic. In case of clas-
sical logic, the values attributed to truth T and fal-
sity F are 1 and 0 respectively. Later, the develop-
ment of fuzzy logic was proposed as a generalization
of the Boolean Logic [12] where T and F could as-
sume any values from [0, 1]. Although the theory of
fuzzy sets, which was proposed by L. A. Zadeh [15]
in 1965, revolutionized the approach of dealing with
uncertainties, yet it had its own limitations. Hence, in
due course of time, several other improvizations of the
fuzzy theory came into existance. Some of these in-
clude the theory of L-Fuzzy sets by Goguen [7], the
theory of rough sets by Pawlak [9], the theory of intu-
itionistic fuzzy sets by K. T. Atanassov [1,2] etc. Un-
like the theory of fuzzy sets which associates a cer-
tain degree of membership, µ ε [0, 1] to each element of
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the universe of discourse, intuitionistic fuzzy sets as-
sociate a degree of non-membership ν ε [0, 1] as well,
to each element where 0 ≤ µ + ν ≤ 1. However, the
notion of indeterminacy, generally referred to as the
hesitation margin, π, defined as, π = 1 − µ − ν in
case of intuitionistic fuzzy sets was somewhat specific
and completely dependent on the values of member-
ship and non-membership of an element. This partic-
ular shortcoming of the theory of intuitionistic fuzzy
sets was compensated by the introduction of the the-
ory of neutrosophic sets by Florentin Samarandache in
1995 [11,10]. Neutrosophic sets were proposed as a
generalization of the intuitionistic fuzzy sets and neu-
trosophic logic sprouted from the branch of philoso-
phy ’neutrosophy’ which means the study of neu-
tralities. In case of neutrosophic sets, indeterminacy is
taken care of separately and each element x is charac-
terized by a truth-membership function TA(x), an in-
determinacy membership function IA(x) and a falsity-
membership function FA(x), each of which belongs to
the non-standard unit interval ]0−, 1+[.

Although the neutrosophic indeterminacy is inde-
pendent of the truth and falsity-membership values and
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is more general than the hesitation margin of intuition-
istic fuzzy sets yet, it is not very clear whether the in-
determinacy associated to a particular element refers
to the hesitation regarding its belongingness or non-
belongingness. Expounding it more clearly, it might
be stated that if for a particular event x, a person as-
sociates an indeterminacy membership IA(x), it be-
comes difficult to comprehend whether the degree of
uncertainty of the person regarding the occurance of
the event is IA(x) or the degree of uncertainty of the
person regarding the non-occurance of that event is
IA(x). Thus, while some authors prefer to model the
behaviour of indeterminacy in a way similar to that
of the truth-membership, others may prefer to model
its behaviour in a way similar to that of the falsity-
membership. Quite naturally, this often leads to diverse
approaches in dealing with uncertainty while execut-
ing various operations over neutrosophic sets as can be
seen from the works of [13,14] etc.

At this juncture, it became necessary to look for
means to find a solution to this conflict of interests. In
this regard, Belnap’s four valued logic [3], which in-
volves the study of truth T , falsity F , unknown U and
contradictitonC proves to be a more general approach.
Based on this, Smarandache proposed the notion of
Four Numerical-valued neutrosophic logic [12] where
the indeterminacy is split into two parts namely, ’un-
known’ viz. neither true nor false and ’contradiction’
viz. both true and false, thereby providing a solution
to the difficulties encountered in dealing with usual
neutrosophic indeterminacy. This four-valued neutro-
sophic logic being of special interest to us, a notion
of Quadripartitioned Single Valued Neutrosophic Sets
(QSVNS, in short) is introduced in this paper whereby
some of their properties have been studied and an ap-
plication to an example of a pattern recognition prob-
lem has been shown.

The organization of the paper is as follows:
Section 1 provides a brief introduction; Section 2
is dedicated to recalling some preliminary results;
Section 3 introduces the concept of a quadriparti-
tioned neutrosophic set and deals with some basic
set-theoretic operations over quadripartitioned neutro-
sophic sets; Section 4 introduces the definition of sim-
ilarity and distance measure; Section 5 deals with the
concept of entropy over QSVNS; Section 6 consists of
a comparative study of the proposed similarity mea-
sures in the context of classification of patterns; Sec-
tion 7 concludes the paper.

2. Preliminaries

In this section we discuss some preliminary results
that would prove to be useful in the following sections.

2.1. An overview of four valued logic

Belnap [3], with a view to device a practical tool
for inference, introduced the concept of a four valued
logic. In his work, corresponding to a certain informa-
tion he considered four possibilities namely
T : just True
F : just false
None: neither True nor False and,
Both: both True and False.
He symbolized these four truth values as
4 = {T, F,Both,None}
such that the possible values satisfied the conditions as
shown in Table 1.

Also, for a mapping s from any atomic information
into 4, the semantics was induced as
s(A&B) = s(A)&s(B)
s(A ∨B) = s(A) ∨ s(B)
s(∼ A) =∼ s(A)

And, for any formulae A,B,C the following results
hold:
(i) A ∨B ⇔ B ∨A; A&B ⇔ B&A.
(ii) A ∨ (B ∨ C)⇔ (A ∨B) ∨ C;
A&(B&C)⇔ (A&B)&C.
(iii) A&(B ∨ C)⇔ (A&B) ∨ (A&C);
A ∨ (B&C)⇔ (A ∨B)& (A ∨ C).
(iv) (B ∨ C)&A⇔ (B&A) ∨ (C&A);
(B&C) ∨A⇔ (B ∨A)& (C ∨A).
(v) ∼∼ A⇔ A
(vi) ∼ (A&B)⇔∼ A∨ ∼ B;
∼ (A ∨B)⇔∼ A& ∼ B.

In [12], Smarandache recast Belnap’s concept of
four valued logic as “Four-numerical valued neutro-
sophic logic” where the indeterminacy I is split as
U = unknown and C = contradiction. T, F,C, U
are subsets of [0, 1] instead of symbols.

2.2. Some results regarding neutrosophic sets

Definition 2.1[13]. Let X be a space of points with
a generic element in X denoted by x. A single val-
ued neutrosophic set A in X is an object of the form
A =

∑n
i=1 〈TA(xi), FA(xi), IA(xi)〉 /xi, xi εX
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Table 1
Table representing the properties of the four truth values.

N F T B

∼ B T F N

& N N F N F

F F F F F

T N F T B

B F F B B

∨ N N N T T

F N F T B

T T T T T

B T B T B

when the universe of discourse is discrete.
It is represented as
A =

∫
X 〈TA(x), IA(x), FA(x)〉 /x, x εX

when the universe of discourse is continuous.
TA, IA, FA respectively denote the truth-membership,
indeterminacy membership and falsity-membership
functions such that for each point x in X,
TA(x), IA(x), FA(x) ε [0, 1].

The various operations are defined as,
Containment: A ⊆ B iff TA(xi) ≤ TB(xi), IA(xi) ≤
IB(xi), FA(xi) ≥ FB(xi)

Complement: c(A) =
∑n

i=1 < FA(xi), 1−IA(xi), TA(xi) >

/xi

Union: A ∪ B =
∑n

i=1 < TA(xi) ∨ TB(xi), IA(xi) ∨
IB(xi), FA(xi) ∧ FB(xi) > /xi

Intersection: A ∩ B =
∑n

i=1 < TA(xi) ∧ TB(xi), IA(xi) ∧
IB(xi), FA(xi) ∨ FB(xi) > /xi for xi εX

Remark 2.2 [14]. As stated before, an alternative
approach where the behaviour of the indeterminacy is
assumed to be similar to that of the falsity member-
ship, exists and is widely in use. In such cases the op-
erations are defined as,
Containment: A ⊆ B iff TA(xi) ≤ TB(xi), IA(xi) ≥
IB(xi), FA(xi) ≥ FB(xi)

Union: A ∪ B =
∑n

i=1 < TA(xi) ∨ TB(xi), IA(xi) ∧
IB(xi), FA(xi) ∧ FB(xi) > /xi

Intersection: A ∩ B =
∑n

i=1 < TA(xi) ∧ TB(xi), IA(xi) ∨
IB(xi), FA(xi) ∨ FB(xi) > /xi for xi εX.

Proposition 2.3 [13]. SVNS satisfy the following
properties under set-theoretic operations:
(i) A ∪B = B ∪A; A ∩B = B ∩A.
(ii) A ∪ (B ∪ C) = (A ∪B) ∪ C;
A ∩ (B ∩ C) = (A ∩B) ∩ C.

(iii) A ∪A = A; A ∩A = A.
(iv) A ∪ (A ∩B) = A; A ∩ (A ∪B) = A.
(v) c (c(A)) = A.
(vi) De-Morgan’s laws hold viz.
c(A ∪B) = c(A) ∩ c(B);
c(A ∩B) = c(A) ∪ c(B).

3. Quadripartitioned Single Valued Neutrosophic
Sets

In this section we propose some set-theoretic op-
erations on quadripartitioned neutrosophic sets over
a common universe X and study some of their basic
properties.

Definition 3.1. Consider two QSVNSA andB, over
X . A is said to be contained in B, denoted by A ⊆ B

iff TA(x) ≤ TB(x), CA(x) ≤ CA(x), UA(x) ≥ UA(x) and
FA(x) ≥ FA(x).

Definition 3.2. The complement of a QSVNS A is
denoted by Ac and is defined as
Ac =

∑n
i=1 〈FA(xi), UA(xi), CA(xi), TA(xi)〉 /xi , xi εX

i.e. TAc (xi) = FA(xi), CAc (xi) = UA(xi) , UAc (xi) =

CA(xi) and FAc (xi) = TA(xi), xi εX.

Definition 3.3. The union of two QSVNS A and B
is denoted by A ∪B and is defined as
A∪B =

∑n
i=1 < TA(xi)∨TB(xi), CA(xi)∨CB(xi), UA(xi)∧

UB(xi), FA(xi) ∧ FB(xi) > /xi

Definition 3.4. The intersection of two QSVNS A
and B is denoted by A ∩B and is defined as
A ∩ B =< TA(xi) ∧ TB(xi), CA(xi) ∧ CB(xi), UA(xi) ∨
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UB(xi), FA(xi) ∨ FB(xi) > /xi

Example 3.5. Consider two QSVNS defined over
X , given by
A = 〈0.7, 0.5, 0.2, 0.1〉 /x1 + 〈0.2, 0.6, 0.1, 0.5〉 /x2+

〈0.5, 0.2, 0.7, 0.1〉 /x3 + 〈0.4, 0.2, 0.5, 0.8〉 /x4
B = 〈0.0, 0.25, 0.7, 0.6〉 /x1 + 〈0.5, 0.5, 0.3, 0.1〉 /x2+

〈0.9, 0.2, 0.0, 0.0〉 /x3 + 〈0.01, 0.1, 0.2, 1.0〉 /x4
Then we have
Ac = 〈0.1, 0.2, 0.5, 0.7〉 /x1 + 〈0.5, 0.1, 0.6, 0.2〉 /x2+

〈0.1, 0.7, 0.2, 0.5〉 /x3 + 〈0.8, 0.5, 0.2, 0.4〉 /x4
A ∪ B = 〈0.7, 0.5, 0.2, 0.1〉 /x1 + 〈0.5, 0.6, 0.1, 0.1〉 /x2 +

〈0.9, 0.2, 0.0, 0.0〉 /x3 + 〈0.4, 0.2, 0.2, 0.8〉 /x4
A ∩ B = 〈0.0, 0.25, 0.7, 0.6〉 /x1 + 〈0.2, 0.5, 0.3, 0.5〉 /x2 +

〈0.5, 0.2, 0.7, 0.1〉 /x3 + 〈0.01, 0.1, 0.5, 1.0〉 /x4

Proposition 3.6. Quadripartitioned single valued
neutrosophic sets satisfy the following properties un-
der the aforementioned set-theoretic operations:
1. A ∪B = B ∪A;A ∩B = B ∩A
2. A ∪ (B ∪ C) = (A ∪B) ∪ C;A ∩ (B ∩ C) = (A ∩B) ∩ C
3. A ∪ (A ∩B) = A;A ∩ (A ∪B) = A

4.(i) (Ac)c = A

(ii) Ac = Θ

(iii) Θc = A

(iv) De-Morgan’s laws hold viz.
(A ∪B)c = Ac ∩Bc; (A ∩B)c = Ac ∪B
5.(i) A ∪A = A

(ii) A ∩A = A

(iii) A ∪Θ = A

(iv) A ∩Θ = Θ

Proof: The proofs are straight-forward.

4. Various similarity measures on
quadripartitioned neutrosophic sets

Definition 4.1. Let QSV NS(X) denote the set of
all quadripartitioned neutrosophic sets, over the non-
empty universe of discourse X . Then a mapping s :

QSV NS(X) × QSV NS(X) → [0, 1] is said to be a sim-
ilarity measure iff for A,B εQSV NS(X) it satisfies the
following properties viz.
(S1) s(A,B) = s(B,A)

(S2) 0 ≤ s(A,B) < 1 and s(A,B) = 1 iff A = B

(S3) for any A,B,C εQSV NS(X), such that, A ⊂ B ⊂ C,
s(A,C) ≤ s(A,B) ∧ s(B,C).

A recent study shows that several measures of sim-
ilarity exist in the literature which do not satisfy the

triangle inequality (S3). Some example of such simi-
larity measures are,

Weighted similarity measure for SVNS based on
matching function [8]:

sw(A,B) =∑n
i=1 ωi(TA(xi).TB(xi)+IA(xi).IB(xi)+FA(xi).FB(xi))

2∑n
i=1 ωi{(T2

A
(xi)+I2

A
(xi)+F2

A
(xi)).(T2

B
(xi)+I2

B
(xi)+F2

B
(xi))}

where ωi ε [0, 1] is the weight associated to each xi εX.

Cosine similarity measure for interval valued neu-
trosophic sets [4]:

CN (A,B) = 1
n

∑n
i=1[(4TA(xi).4TB(xi)+4IA(xi).4IB(xi)+

4FA(xi).4FB(xi))/(4T 2
A(xi) +4I2A(xi) +4F 2

A(xi))
1
2 .

(4T 2
B(xi) +4I2B(xi) +4F 2

B(xi))
1
2 ]

Dice similarity measure for single valued neutro-
sophic multisets [14]:

SD(A,B) = 1
n

∑n
j=1

∑lj
i=1[2{(T

i
A(xj).T

i
B(xj)+I

i
A(xj)).(I

i
B(xj)+

F i
A(xj).F

i
B(xj))}/{(T i

A(xj)
2+IiA(xj)

2+F i
A(xj)

2)+(T i
B(xj)

2+

IiB(xj)
2 + F i

B(xj)
2)}]

where lj = L(xj : A,B) = max {L(xj : A), L(xj : B)} is
the maximum length of an element , j = 1, 2, ..., n.

These measures have found extensive applicability
in various spheres pertaining to decision making prob-
lems and yet they do not satisfy (S3). We thus in-
troduce the definition of a different kind of similar-
ity measure, which we term as quasi-similarity, a term
which was first mentioned in [6] as follows:

Definition 4.2. A mapping s : QSV NS(X)×QSV NS(X)→
[0, 1] is said to be a quasi-similarity measure if it satis-
fies (S1)and (S2).

4.1. Distance based similarity measure

Before proceeding to define the distance based simi-
larity measure, the notion of distance between QSVNS
is introduced first.

Definition 4.3. A mapping d : QSV NS(X)×QSV NS(X)→
R+, where R+ is the set of all positive real numbers, is
said to be a distance measure iff forA,B,C εQSV NS(X),
it satisfies the following properties
(D1) d(A,B) ≥ 0 and equality holds iff A = B.
(D2) d(A,B) = d(B,A)



R. Chatterjee et al. / On some similarity measures and entropy on quadripartitioned single valued neutrosophic sets 5

(D3) d(A,B) ≤ d(A,B) + d(A,C)

Let A,B εQSV NS(X) then for all xi εX , we define
the following distance measures.

Definition 4.4. The Hamming distance between A
and B is defined as
h(A,B) =

∑n
i=1(|TA(xi)− TB(xi)|+ |CA(xi)− CB(xi)|+

|UA(xi)− UB(xi)|+ |FA(xi)− FB(xi)|).

Definition 4.5. The Normalized Hamming distance
between A and B is defined as hN (A,B) = 1

4n
h(A,B).

Definition 4.6. The Euclidean distance between A
and B is defined as
e(A,B) =

∑n
i=1(|TA(xi)− TB(xi)|2 + |CA(xi)− CB(xi)|2 +

|UA(xi)− UB(xi)|2 + |FA(xi)− FB(xi)|2)
1
2

Definition 4.7. The Normalized Euclidean distance
between A and B is defined as eN (A,B) = 1

2
√
n
e(A,B).

Definition 4.8. The distance based similarity mea-
sure between A,B εQSV NS(X) is defined as
Sd(A,B) = 1

1+d(A,B)

where the distance between A and B can be evaluated
using any of the afore-stated methods.

Example 4.9. Consider the QSVNS of example 3.5,
then we have, h(A,B) = 5.14, hN (A,B) = 0.32, e(A,B) =

1.52 and eN (A,B) = 0.38. Also, the distance based sim-
ilarity measure corresponding to the Hamming dis-
tance, Normalized Hamming distance, Euclidean dis-
tance and Normalized Euclidean distance are found to
be 0.163, 0.758, 0.397 and 0.725 respectively.

4.2. Similarity measures based on membership values

Suppose A,B εQSV NS(X). At first some functions
are defined which would be useful in defining the sim-
ilarity measure.
For each xi εX, i = 1, 2, ..., n and for j = 1, 2, 3, 4 define
the functions hA,B

j : X → [0, 1] respectively as,
hA,B
1 (xi) = |TB(xi)− TA(xi)|
hA,B
2 (xi) = |FA(xi)− FB(xi)|
hA,B
3 (xi) = 1

3

(
hA,B
1 (xi) + hA,B

2 (xi) + |CB(xi)− CA(xi)|
)

hA,B
4 (xi) = |UA(xi)− UB(xi)|

The functions defined above measure the difference
between the various membership values corresponding
to the two sets A and B w.r.t. each xi. Define a map-

ping,

S
′
(A,B) = 1− 1

4n

∑n
i=1

∑4
j=1 h

A,B
j (xi)

Theorem 4.10. S
′
(A,B) is a measure of similarity

between the two quadripartitioned single valued neu-
trosophic sets A and B over X .

Proof: The proofs are straight-forward.

When an information is represented in terms of a
QSVNS, the uncertainty associated with the informa-
tion are characterized by four membership functions
describing the aspects ’true’, ’both true and false’,
’neither true nor false’ and ’false’. Naturally, it would
be a better attempt if most of the available informa-
tion could be put into best use while defining the mea-
sure of similarity between two QSVNS. Thus, we im-
provize the definition of the proposed similarity mea-
sure as follows:
Suppose,
τA,B
1 (xi)

= 1
2 | (TA(xi).FA(xi)− CA(xi))− (TB(xi).FB(xi)− CB(xi)) |

= 1
2 |(TA(xi).FA(xi)− TB(xi).FB(xi)) + (CB(xi)− CA(xi))|

τA,B
2 (xi) = 1

3

(
hA,B
1 (xi) + hA,B

2 (xi) + |UB(xi)− UA(xi)|
)

Finally define,
S

′′
(A,B)

= 1−[ 1n
∑n

i=1
1
4 (h

A,B
1 (xi) + hA,B

2 (xi) + τA,B
1 (xi) + τA,B

2 (xi))
p
]
1
p

where p is any positive integer, and is defined to be the
"order of similarity".

Theorem 4.11. S
′′
(A,B) is a similarity measure.

Proof:

(i) It is easy to prove that S′′
(A,B) = S

′′
(B,A).

(ii) We have, TA(xi), CA(xi), UA(xi), FA(xi) ε [0, 1]. Thus,
hA,B
1 (xi) attains its maximum value if either one of
TA(xi) or TB(xi) is equal to 1 while the other is 0 and in
that case the maximum value is 1. Similarly, hA,B

1 (xi)

attains a minimum value 0 if TA(xi) and TB(xi) are
equal. So, it follows that 0 ≤ hA,B

1 (xi) ≤ 1. Similarly
it can be shown that hA,B

2 (xi), lies within [0, 1] for all
xi εX. Similar proofs apply for τA,B

1 (xi) and τA,B
2 (xi).

So, 0 ≤ hA,B
1 (xi) + hA,B

2 (xi) + τA,B
1 (xi) + τA,B

2 (xi) ≤ 4

⇒ 0 ≤ 1
n

∑n
i=1[ 1

4
(hA,B

1 (xi) + hA,B
2 (xi) + τA,B

1 (xi) +

τA,B
2 (xi))]

p ≤ 1

which implies 0 ≤ S′′
(A,B) ≤ 1.

Now S
′′

(A,B) = 1 iff
hA,B
1 (xi) + hA,B

2 (xi) + τA,B
1 (xi) + τA,B

2 (xi) = 0 for each
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xi εX

⇔ hA,B
1 (xi) = 0, hA,B

2 (xi) = 0, τA,B
1 (xi) = 0 = τA,B

2 (xi)

⇔ TA(xi) = TB(xi), CA(xi) = CB(xi), UA(xi) = UB(xi),

FA(xi) = FB(xi)

i.e. iff A = B.

(iii) Suppose P ⊂ Q ⊂ R. then, we have,
TP (xi) ≤ TQ(xi) ≤ TR(xi), CP (xi) ≤ CQ(xi) ≤ CR(xi),

UP (xi) ≥ UQ(xi) ≥ UR(xi) and FP (xi) ≥ FQ(xi) ≥
FR(xi) for all xi εX.

Consider hP,Q
1 (xi) and hP,R

1 (xi). Since TQ(xi) ≤
TR(xi), it follows that,
|TR(xi)− TP (xi)| ≥

∣∣TQ(xi)− TP (xi)
∣∣

⇒ hP,R
1 (xi) ≥ hP,Q

1 (xi).
Similarly it can be shown that hP,R

2 (xi) ≥ hP,Q
2 (xi), for

all xi εX.
Next, consider τP,Q

1 (xi) and τP,R
1 (xi).

Since TP (xi) ≤ TQ(xi) ≤ TR(xi), FP (xi) ≥ FQ(xi) ≥
FR(xi), it follows that,
0 ≤ TP (xi).FP (xi) − TQ(xi).FQ(xi) ≤ TP (xi).FP (xi) −
TR(xi).FR(xi). Again, CP (xi) ≤ CQ(xi) ≤ CR(xi), we
have 0 ≤ CQ(xi)− CP (xi) ≤ CR(xi)− CP (xi). Thus,∣∣(TP (xi).FP (xi)− TQ(xi).FQ(xi)

)
+
(
CQ(xi)− CP (xi)

)∣∣
≤ |(TP (xi).FP (xi)− TR(xi).FR(xi)) + (CR(xi)− CP (xi))|
⇒ τP,Q

1 (xi) ≤ τP,R
1 (xi)

Similar proof can be constructed for τP,Q2 (xi) re-
spectively for each xi. Thus, one can safely say that,
1
4

(
hP,R
1 (xi) + hP,R

2 (xi) + τP,R
1 (xi) + τP,R

2 (xi)
)

≥ 1
4

(
hP,Q
1 (xi) + hP,Q

2 (xi) + τP,Q
1 (xi) + τP,Q

2 (xi)
)

which means
( 1
n

∑n
i=1[ 1

4
(hP,R

1 (xi)+h
P,R
2 (xi)+τ

P,R
1 (xi)+τ

P,R
2 (xi))]

p)
1
p ≥

( 1
n

∑n
i=1[ 1

4
(hP,Q

1 (xi)+h
P,Q
2 (xi)+τ

P,Q
1 (xi)+τ

P,Q
2 (xi))]

p)
1
p ,

for any positive integer p.
Thus, it automatically follows that, S′′

(P,R) ≤ S′′
(P,Q).

The proof of S′′
(P,R) ≤ S

′′
(Q,R) follows in a similar

manner. Hence, it can be concluded that
S

′′
(P,R) ≤ S

′′
(P,Q) ∧ S′′

(Q,R) which completes the
proof.

Definition 4.12. The weighted similarity measure
can be defined in a similar way as,
S

′′
w(A,B)

= 1 − [ 1
n

∑n
i=1( 1

3
wi|hA,B

1 (xi) + hA,B
2 (xi) + τA,B

1 (xi) +

τA,B
2 (xi)|)p]

1
p

where wi are the weights associated to the elements xi
of the universe, i = 1, 2, ..., n such that 0 ≤ wi ≤ 1 and∑n

i=1 wi = 1.

It can be easily shown that S
′′

w(A,B) is a measure
of similarity.

4.3. Similarity measure based on correlation
coefficient

Definition 4.13. The correlation coefficient between
two QSVNS A and B is defined as ,

β(A,B) = [
∑n

i=1(TA(xi).TB(xi)+CA(xi).CB(xi)+UA(xi).UB(xi)

+FA(xi).FB(xi))]/[(
∑n

i=1(T
2
A(xi)+C

2
A(xi)+U

2
A(xi)+F

2
A(xi))).

(
∑n

i=1(T
2
B(xi) + C2

B(xi) + U2
B(xi) + F 2

B(xi)))]
1
2

Remark 4.14. β(A,B) is a quasi-similarity between
the sets A and B.

4.4. Quadripartitioned similarity measure

Definition 4.15. For any two QSVNS A and B

over a universe X = {x1, x2, ..., xn}, define the quadri-
partitioned similarity measure S4 : QSV NS(X) ×
QSV NS(X) → [0, 1]4 between two QSVNS A and B in
the sense of Broumi and Smarandache [5] as
S4(A,B) = 〈ST (A,B), SC(A,B), SU (A,B), SF (A,B)〉
where

ST (A,B) =
∑n

i=1 min(TA(xi),TB(xi))∑n
i=1 max(TA(xi),TB(xi))

SC(A,B) =
∑n

i=1 min(CA(xi),CB(xi))∑n
i=1 max(CA(xi),CB(xi))

SU (A,B) =
∑n

i=1 min(UA(xi),UB(xi))∑n
i=1 max(UA(xi),UB(xi))

SF (A,B) =
∑n

i=1 min(FA(xi),FB(xi))∑n
i=1 max(FA(xi),FB(xi))

A quadripartitioned similarity measure is in fact a
quadruple comprising four different similarity mea-
sures in terms of the four membership values of a
QSVNS. At times, for the sake of convenience S4(A,B)

is also represented in the form of a matrix:

S4(A,B) =

〈
ST (A,B) SF (A,B)

SC(A,B) SU (A,B)

〉
Such a similarity measure takes into account, sep-

arately, the degrees of similarity between the various
membership values. It is easy to show that S4(A,B)
satisfies all the axiomatic properties of a similarity
measure. We only give an outline of the proof of the
triangle inequality as follows:

When A ⊂ B ⊂ C , for each xi εX,
min (TA(xi), TB(xi)) = TA(xi)

max (TA(xi), TB(xi)) = TB(xi)

min (TA(xi), TC(xi)) = TA(xi) and
max (TA(xi), TC(xi)) = TC(xi). Thus, in such a case,
ST (A,B) =

∑n
i=1 TA(xi)∑n
i=1 TB(xi)

.

Similarly, ST (A,C) =
∑n

i=1 TA(xi)∑n
i=1 TC(xi)

.
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Since, TB(xi) ≤ TC(xi), it follows that ST (A,C) ≤
ST (A,B).
Similar proofs follow for SC(A,B),SU (A,B) and SF (A,B).
Thus, all the components of S4(A,B) individually sat-
isfy the properties (S1)− (S3).

If, further, we introduce the notations 0 = 〈0, 0, 0, 0〉
, 1 = 〈1, 1, 1, 1〉 and an ordering on [0, 1]4 of the form,
〈a1, a2, a3, a4〉 � 〈b1, b2, b3, b4〉 iff ai ≤ bi, for ai, bi ε [0, 1],
i = 1, 2, 3, 4; then for any A,B εQSV NS(X)

(i) 0 � S4(A,B) � 1

(ii) S4(A,B) = S4(B,A)

(iii) for A,B,C εQSV NS(X) such that A ⊆ B ⊆ C, we
have S4(A,C) � S4(A,B) ∧ S4(B,C).

5. Entropy measure for QSVNS

Definition 5.1. Let X be a non-empty universe of
discourse. A mapping e : QSV NS(X)→ [0, 1] is said to
be an entropy on QSV NS(X) if e satisfies the follow-
ing properties:
(i) e(A) = 0 iff AεP(X)

(ii) e(A) = 1 for AεQSV NS(X) if TA(x) = CA(x) =

UA(x) = FA(x) = 0.5 for all x εX.
(iii) e(A) ≥ e(B) iff TA(x) + FA(x) ≤ TB(x) + FB(x) and
|CA(x)− UA(x)| ≤ |CB(x)− UB(x)|, for all x εX.
(iv) e(A) = e(Ac), for all AεQSV NS(X).

Proposition 5.2.
em(A) = 1− 1

n

∑n
i=1 (TA(xi) + FA(xi)) . |CA(xi)− UA(xi)|,

for all xi εX is an entropy measure.

Proof: Proofs are straight-forward.

Remark 5.3. em is referred to as the entropy based
on membership degrees.

Example 5.4. Consider the QSVNS A of example
3.5 then we have
em(A) = 0.688. Also, em(Ac) = 0.688 = em(A).

6. A comparative study of the proposed similarity
measures in the context of an example
pertaining to pattern recognition

Suppose x1, x2, x3 respectively denote the saturation,
sharpness and contrast of three similar hued patterns
A, B and C which are represented in terms of three
QSVNS as

A = 〈0.5, 0.4, 0.2, 0.01〉 /x1 + 〈0.2, 0.1, 0.3, 0.5〉 /x2+

〈0.45, 0.2, 0.1, 0.3〉 /x3
B = 〈0.4, 0.4, 0.01, 0.0〉 /x1 + 〈0.5, 0.3, 0.4, 0.4〉 /x2+

〈0.5, 0.4, 0.3, 0.1〉 /x3
C = 〈0.56, 0.8, 0.0, 0.0〉 /x1 + 〈0.6, 0.5, 0.3, 0.2〉 /x2+

〈0.4, 0.4, 0.5, 0.6〉 /x3

Further suppose that there are two unidentified pat-
terns P1 and P2 given by
P1 = 〈0.45, 0.4, 0.11, 0.05〉 /x1 + 〈0.35, 0.2, 0.35, 0.45〉 /x2
+ 〈0.45, 0.3, 0.2, 0.2〉 /x3
P2 = 〈0.6, 0.7, 0.01, 0.0〉 /x1 + 〈0.5, 0.5, 0.4, 0.2〉 /x2 +

〈0.3, 0.2, 0.5, 0.6〉 /x3

In order to determine which unidentified pattern be-
longs to which one of the specified patterns at hand,
the similarity measures between the given patterns A
and B and the unknown patterns P1 and P2 are calcu-
lated. Finally, the unidentified pattern bearing the high-
est similarity to the given set of patterns is concluded
to belong to that particular set of patterns. In this re-
spect, it needs to be stated that the similarity measure
S

′′ has been calculated taking 3 values of the order of
similarity p viz. p = 1, p = 2 and p = 3. The obtained
results are represented in a tabular form (ref. Table2).

Discussion:

From the given set of data, it is seen that, the calcu-
lated values of the similarity measures S′

, S
′′ and S4

between P1 and A,B,C indicate that the pattern P1 be-
longs to the class of patterns, of which A is a member.
However, the quasi similarity measure β throws close
values for β (P1, A)and β (P2, B) which creates confu-
sion in classifying the pattern P1. Thus, S′

, S
′′ and S4

are better measures of similarity compared to β. More-
over, from the similarity measure S4(P1, A), it is seen
that membership values T , C, U and F of the patterns
P1 and A are similar upto 84.6%, 77.8%, 68% and 77.6%

respectively. Similarly, all the measures S′ , S′′, β and
S4 show that the pattern P2 belongs to the class of pat-
terns C.

7. Conclusion

In this paper, Belnap’s four valued logic has been
used as a framework for proposing a set-theoretic
structure which involves partitioned indeterminacies.
Although apparently it might so appear that the inde-
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Table 2
Table representing the similarity measures among the different patterns.

Unidentified Similarity Given Patterns:

Patterns ↓ Measures A B C

P1 S
′

0.931 0.924 0.816

S
′′

0.941p=1 0.934p=1 0.830p=1

0.940p=2 0.932p=2 0.825p=3

0.938p=3 0.931p=2 0.821p=3

β 0.971 0.973 0.886

S4

〈
0.846 0.776

0.778 0.680

〉 〈
0.828 0.714

0.818 0.691

〉 〈
0.745 0.364

0.529 0.521

〉
P2 S

′
0.794 0.842 0.956

S
′′

0.821p=1 0.834p=1 0.959p=1

0.808p=2 0.812p=2 0.958p=2

0.798p=3 0.792p=3 0.957p=3

β 0.825 0.866 0.986

S4

〈
0.645 0.450

0.500 0.373

〉 〈
0.750 0.300

0.625 0.780

〉 〈
0.850 1.000

0.824 0.879

〉

terminacy membership functions C and U are inter-
dependent, often, in reality, while dealing with lin-
guistic approaches, it is quite natural that the values
corresponding to the functions are actually indepen-
dent and the mutual dependence of these functional
values boils down to a particular case under specula-
tion.As for example, concerning a particular sample of
information, a particular person may be utterly clueless
as to whether the piece of information is true, false,
both true and false or neither of them. In such cases
his judgement may instinctively, yet quite involuntar-
ily hover between ’both true and false’ and ’neither
true nor false’, being totally unaware of the fact that
these two truth values are somewhat logically comple-
mentary. For another instance, given two patterns un-
der consideration, it might so happen that at a partic-
ular moment the graphical representations of the two
patterns are same while they differ in terms of the con-
stituent hues. Thus, at such stances the information
that the patterns are similar are both true and false
and simultaneously neither true nor false. Putting into
considerations such situations such as these, it is ev-
ident that a structure like QSVNS prove to be use-
ful and at times essential in representing and tackling
the available information. At present some basic set-
theoretic operations and similarity measures have been
stated. Future works may involve dealing with actual
problems, rather than fictitious ones, and implement-
ing them in decision making problems.
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