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Abstract. We use Padmabhan’s “Invitation to Astrophysics” formalism of a scalar field evolution of the early 

universe, from first principles, to show something which seems counter intuitive. How could , just before 

inflation, KINETIC energy be larger than potential energy in pre Planckian physics, and what physics 

mechanism is responsible for the Planckian physics result that Potential energy is far  larger than KINETIC 

energy. This document answers that question, as well as provides a mechanism for the dominance of KINETIC 

energy in Pre Planckian space-time, as well as its reversal in the Planckian era of cosmology. the KE initially 

proportional to  3 1 4~
w

w a g T
   , with g initial degrees of freedom, and T the initial 

temperature just before the onset of inflation. Our key assumption is the smallness of curvature, 
as given in the first equation, which permits adoption of the Potential energy and Kinetic energy 
formalism used, in the Planckian and Pre Planckian space-time physics. 

i. Introduction 

     We begin with a review from T. Padmanabhan [1] as to the foundations of a scalar field and a 

potential field, in terms of cosmological evolution. Following that, we are adding more detail as to a 

supposition by W J Handley et al, as to how the Kinetic energy would be much larger than the Potential 
energy [2] as to the dominance of Kinetic energy over potential energy. Here, we offer a mechanism for 

how this may happen. We also state that the KE we postulate is due to  formalism we work with while 

we are reviewing Padmanbhan [1] , scalar evolution of cosmology, and how it relates to Kinetic and 
Potential energy values In doing this, we are reviewing  near flat space solutions , given on page 247 
of [1] to the effect that if we take imaginary time, that we will be able to then get a dominant value to 

what we will call   44
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 in an interval of space time which is before 

Planck time interval. In doing so, we are assuming that the near flat space result for minimum curvature 
holds, even in the Planckian regime, as given by A.W.Beckwith [  3 ]  
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If the curvature measure, above is almost zero, then we can use from [1] , page 246 
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If so, then using the Potential energy and Kinetic energy values from [1], page 247 we can write the 
following 
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The term ( )V t  is for Potential energy, and it is by inspection >>   2 t  in the Planckian space-time 

regime which is the Kinetic energy component, provided that time here is a real co-ordinate. 

We will, for now on, to keep this real time non dimensional, make the following identification with  
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For the sake of identification, we will be assuming that Eq.(3) and Eq.(4) are in the present universe 

and that   is extraordinarily small.  

ii.  Re examination of Eq. (3) and Eq.(4) in a pre universe configuration 

Our supposition is that Eq. (4) in the matter of Pre Planckian space time, say in a boundary of 2 times 

Planck time to buttress the repeating cyclical universe we are assuming as possibility  given by  Penrose  



 

 

 

 

 

 

[4] , is changed then to take into the quantum bounce analogy we think should be looked at [5] as given 

by C. Rovelli and F. Vidotto  
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this switch, so then in this regime, we would re write the relevant evaluative time for the Potential and 
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     that we are looking at a Vanishing Potential energy, but a Kinetic 

energy which would be very different from Zero.  
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The fact we have a very large non zero   44
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In making this evaluation, we are assuming that there could be use of the following for relic 
Gravitational waves. ,i.e. for Eq.(7) to hold we will be looking at a time interval which may be specified 
by [ 6 ]  
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Initially, as postulated by Babour  [6,7] this set of masses, given in the emergent time structure could 
be for say the planetary masses of each contribution of the solar system. Our identification is to have 

an initial mass value, at the start of creation, for an individual graviton. . So If  
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This would entail assuming relic gravitation generated by a massive graviton bounded below by 
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And the magnitude of K.E. as defined by  
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iii. Conclusion.  

Our hypothesis, as to Eq. (11) is equivalent to what is frequently postulated as an energy density as 
given by Kolb and Turner [ 9 ] . Needless to Eq. (7) and Eq.(11) are stated as hypothesis, and we are 
also saying that the magnitude of Eq. (9) is equivalent to results for a quantum bounce with T the initial 
temperature just before the onset of inflation.. 

                                                                3 1 4~
w

w a g T
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We will be attempting to get full analytical connection between Eq.(12) and Eq. (11) by our next 
publication 
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