Nine steps transforming incompressible Navier-Stokes equations into parabolic partial differential equations

Algirdas Antano Maknickas*

Institute of Mechanics, Vilnius Gediminas Technical University, Basanavičiaus 28, Vilnius, Lithuania

October 19, 2015

Abstract

It was shown that using spatial transform obtained by applying the difference to spatial global coordinates and time integral of velocities non linear Navier-Stokes equation transforms into parabolic equations.

Nine steps of linearisation

Let's start from Navier-Stokes equations [1, 2, 3]

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v}$$

We know that in the left side is full time derivative

$$\frac{D\mathbf{v}}{Dt} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \mathbf{v} \tag{1}$$

Now we could integrate both sides by time and obtain for $\mathbf{v}(\mathbf{r},t)$

$$\mathbf{v}(\mathbf{r},t) = -\frac{1}{\rho} \int_0^t \nabla_{\mathbf{r}} p(\mathbf{r},\tau) d\tau + \nu \int_0^t \nabla_{\mathbf{r}}^2 \mathbf{v}(\mathbf{r},\tau) d\tau$$
(2)

We obtained formal solution for velocities as follow

$$\mathbf{v}(\mathbf{r},t) = \mathbf{F}(\mathbf{r},t) \tag{3}$$

Eq. (3) is valid for any ${\bf r}'$ in the boundary where we try to solve NS equation. We could choose ${\bf r}'$ so that

$$\mathbf{r}' = \mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau \tag{4}$$

^{*}Email: algirdas.maknickas@vgtu.lt

and

$$\mathbf{v}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t) = \mathbf{F}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)$$
(5)

or by taking full derivative of both sides we obtain

$$\frac{D\mathbf{v}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{Dt} = \frac{D\mathbf{F}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{Dt} =$$
(6)

$$-\nabla p(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t) + \nu \nabla_{(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}^2 \mathbf{v}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)$$
(7)

It is easy to prove that

$$\frac{D\mathbf{v}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{Dt} = \frac{\partial \mathbf{v}(\mathbf{r} - \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{\partial t}.$$
(8)

So, we obtain parabolic equations

$$\frac{\partial \mathbf{v}\left(\mathbf{r}',t\right)}{\partial t} = -\frac{1}{\rho} \nabla_{\mathbf{r}'} p\left(\mathbf{r}',t\right) + \nu \nabla_{\mathbf{r}'}^2 \mathbf{v}\left(\mathbf{r}',t\right)$$
(9)

which are analytically solvable for defined boundaries using for example Green function method. When we obtain velocities $\mathbf{v}(\mathbf{r}', t)$ in the local coordinates we could go back to the global coordinates by inserting new one coordinates $\mathbf{r}' + \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau$ into obtained analytical solution which implies that

$$\nabla_{\mathbf{r}'+\int_0^t \mathbf{v}(\mathbf{r},\tau)d\tau} \mathbf{v}(\mathbf{r}'+\int_0^t \mathbf{v}(\mathbf{r},\tau)d\tau,t) = \nabla_{\mathbf{r}}^2 \mathbf{v}(\mathbf{r},t)$$

and

$$\begin{aligned} \frac{\partial \mathbf{v}(\mathbf{r}' + \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{\partial t} &= \frac{\partial \mathbf{v}(\mathbf{r}' + \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{\partial t} + \\ \frac{\partial (\mathbf{r}' + \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t)}{\partial t} \cdot \nabla_{\mathbf{r}' + \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau} \mathbf{v}(\mathbf{r}' + \int_0^t \mathbf{v}(\mathbf{r}, \tau) d\tau, t) = \\ \frac{\partial \mathbf{v}(\mathbf{r}, t)}{\partial t} + \frac{\partial \mathbf{r}}{\partial t} \cdot \nabla_{\mathbf{r}} \mathbf{v}(\mathbf{r}, t) = \frac{\partial \mathbf{v}(\mathbf{r}, t)}{\partial t} + \mathbf{v}(\mathbf{r}, t) \cdot \nabla_{\mathbf{r}} \mathbf{v}(\mathbf{r}, t). \end{aligned}$$

References

- [1] Navier, C. L. M. H. Mem acad. R. sci. paris, Vol. 6, 389-416, 1823.
- [2] Cauchy, A.L. Exercises de mathematique, p.183, Paris, 1828.
- [3] Stokes. G. G. trans. Camb. Phil. Soc., vol 8, 287–305, 1845.