$$
\begin{aligned}
& \text { Proof of Fermat's last theorem (Part I of III) } \\
& \qquad a^{n}+b^{n}=c^{n}(\mathrm{n}>1 \text { and odd })
\end{aligned}
$$

Objet: Proof of Fermat's last theorem with conventional means.

Author: Romdhane DHIFAOUI (romdhane.dhifaoui@yahoo.fr).

1) Introduction :
\checkmark I am not a professional of mathematics.
\checkmark My English is poor. I use google translate to write these pages.
2) I prove that $\mathrm{c}<(\mathrm{a}+\mathrm{b})$
$(a+b)^{n}=a^{n}+b^{n}+\sum_{k=1}^{n-1}\binom{n-1}{k} a^{k} b^{n-k}$
Then $(a+b)^{n}>\left(a^{n}+b^{n}\right)$
Then $(a+b)^{n}>\mathrm{c}^{\mathrm{n}}$ because $\mathrm{c}^{\mathrm{n}}=a^{n}+b^{n}$
Then $(a+b)>c$
d is a natural number. It is the complement of c to $(a+b)$.
$c+d=a+b$
$c=a+b-d$
$c-b=a-d$
$c-a=b-d$
3) I prove a parity of d

Whatever the parity of a, b and c, we can easily verify that d is always even.

a	b	c	d
even	even	even	even
even	odd	odd	even
odd	even	odd	even
odd	odd	even	even

2^{n} divide d^{n}.
4) Conditions (supposition) to prove Fermat's last theorem : $\checkmark \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and n are non-zero positive integers
$\checkmark \mathrm{a}, \mathrm{b}$ and c are pairwise coprime
$\checkmark \mathrm{n}>1$ and odd
$\checkmark \mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}=\mathrm{c}^{\mathrm{n}}$
$\checkmark \mathrm{a}+\mathrm{b}=\mathrm{c}+\mathrm{d}$
$\checkmark \mathrm{a}<\mathrm{b}$
5) $\underline{\text { Iprove that } c \text { is not coprime with } d}$
$d^{n}=d^{n}$
$c^{n}-a^{n}-b^{n}=0$
$d^{n}=d^{n}+c^{n}-a^{n}-b^{n}$
$d^{n}=\left(d^{n}+c^{n}\right)-\left(a^{n}+b^{n}\right)$
$(c+d)$ divide $\left(d^{n}+c^{n}\right)$
$(a+b)$ divide $\left(a^{n}+b^{n}\right)$
$(c+d)=(a+b)$
$(c+d)$ divide d^{n}
Any integer which divide $(c+d)$ divide d^{n}
Any prime number which divide $(c+d)$ divide d^{n}
Any prime number which divide $(c+d)$ divide d
Any prime number which divide $[(c+d)$ and $d]$ divide c \boldsymbol{c} is not coprime with d
$(c+d)=(a+b)$
($\mathrm{a}+\mathrm{b}$) divide d^{n}
Any prime number which divide $(a+b)$ divide d
6) I prove that a is not coprime with d
$d^{n}=d^{n}$
$c^{n}-a^{n}-b^{n}=0$
$d^{n}=d^{n}+c^{n}-a^{n}-b^{n}$
$d^{n}=\left(c^{n}-b^{n}\right)-\left(a^{n}-d^{n}\right)$
$(c-b)$ divide $\left(c^{n}-b^{n}\right)$
$(a-d)$ divide $\left(a^{n}-d^{n}\right)$
$(c-b)=(a-d)$
$(a-d)$ divide d^{n}
$(c-b)$ divide $d^{\boldsymbol{n}}$

Any integer which divide $(a-d)$ divide d^{n} Any prime number divide $(a-d)$ divide d^{n} Any prime number divide $(a-d)$ divide d Any prime number divide $[(a-d)$ and d] divide a a is not coprime with d (Except if $(a-d)=1)$.
$(c-b)=(a-d)$
$(\boldsymbol{c}-\mathrm{b})$ divide $\boldsymbol{d}^{\boldsymbol{n}}$
Any prime number which divide $(c-b)$ divide d.
7) I prove that b is not coprime with d
$d^{n}=d^{n}$
$c^{n}-a^{n}-b^{n}=0$
$d^{n}=d^{n}+c^{n}-a^{n}-b^{n}$
$d^{n}=\left(c^{n}-a^{n}\right)-\left(b^{n}-d^{n}\right)$
$(c-a)$ divide $\left(c^{n}-a^{n}\right)$
$(b-d)$ divide $\left(b^{n}-d^{n}\right)$
$(c-a)=(b-d)$
$(b-d)$ divide \boldsymbol{d}^{n}
$(c-a)$ divide d^{n}
Any integer which divide $(b-d)$ divide d^{n}
Any prime number divide $(b-d)$ divide d^{n}
Any prime number divide $(b-d)$ divide d
Any prime number divide $[(b-d)$ and d] divide b
b is not coprime with d
$(c-a)=(b-d)$
$(c-a)$ divide d^{n}
Any prime number which divide $(c-a)$ divide d

I proved that:

1. Any prime number which divide $(a+b)$ divide d.
2. Any prime number which divide $(c+d)$ divide d.
3. Any prime number which divide $(a-d)$ divide d.
4. Any prime number which divide $(c-b)$ divide d.
5. Any prime number which divide $(b-d)$ divide d.
6. Any prime number which divide $(c-a)$ divide d.
