

Erratum: Local discrimination of quantum measurement without assistance of classical information [J. Quantum Inf. Sci. 2015, 5, 71]

You-Bang Zhan

Copyright © 2015 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0</u>

There are mistakes in Sections 3 and 4 of this paper, some calculated values need to be corrected in the following some sentences:

On page 75, Section 3, first paragraph:

Now let us turn to depict the LQMD. Suppose that two spacelike separated observers, Alice and Bob, share 16 [not 30] seven-qubit GHZ states, which [...],

where $k = 1, 2, \dots, 16$ [not 30], and [\dots]. [\dots], on her qubits in the state $\left| G^{(k)} \right\rangle$ ($k = 1, 2, \dots, 16$ [not 30]) respectively. [\dots], the probability of all qubits $B^{(k)}$ in the states $\frac{1}{g_n T_n} \left| \mu^+ \right\rangle$ or $\frac{1}{g_n T_n} \left| \mu^- \right\rangle$ ($g_n = 2^{(6-n)/2}, n = 1, 2, \dots, 6$) is $\left(\frac{63}{64} \right)^{16} \approx 0.78$ [instead of $\left(\frac{63}{64} \right)^{30} \approx 0.62$], *i.e.*, the probability of at least one qubit $B^{(k')}$ in the state $\left| \psi_6^+ \right\rangle$ is $1 - \left(\frac{63}{64} \right)^{16} \approx 0.22$ [instead of $1 - \left(\frac{63}{64} \right)^{30} \approx 0.38$]. [\dots]. One can see that, after measurements of Bob, in the 22% [not 38%] cases, [\dots]. [\dots] will be in the ratio of one to u ($u = \left(\frac{x^{32}}{y^{31}} \right)^2 / \left(\frac{y^{32}}{x^{31}} \right)^2 \approx 9.22 \times 10^{18}$ [not 1.45×10^{29}]),

that is, the qubit $B^{(k')}$ will be always collapsed into the state $|1\rangle$. As a special case, we also assume that all the other 15 [not 29] qubits $B^{(k)}$ are in the states $|\psi_1^{\pm}\rangle$ after Alice's measurements and then all the 15 [not 29] qubits are in the state $|0\rangle$ after Bob's measurements. In this situation, one can easily find that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to 1.6 [not 2.5] after Bob's measurements. For general cases in which the qubit $B^{(k')}$ in the state $|\psi_6^{\pm}\rangle$ and other 15 [not 29] qubits $B^{(k)}$ collapsed randomly into the states $\frac{1}{gT}|\mu^{\pm}\rangle$

How to cite this paper (ISO 690, Harvard): LASTNAME1, FirstName1 and LASTNAME2, FirstName2, 2015. Paper Title. Advances in Aerospace Science and Technology, 2015, vol. *, no. *, pp. **-**. <u>http://dx.doi.org/10.4236/jqis.2015.*****</u> Previous presentation: Parts of this paper were published / made public before ... (if it applies, provide reference to source and specify which part of the paper).

 $(g_n = 2^{(6-n)/2}, n = 1, 2, \dots, 6)$ after Alice's measurements, it is easily found that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to $w_{(1)}$ ($w_{(1)} > 1.6$ [not 2.5]) after Bob's measurements. Now we consider the case in which there are two qubits $B^{(k')}$ and $B^{(k')}$ in the state $|\Psi_6^+\rangle$ after Alice's measurements. Similar to the above described, one can find that the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to $w_{(2)}$ ($w_{(2)} \ge 3.43$ [not 5.15]) after Bob's measurements. For the cases in which more qubits $B^{(1)}$, $B^{(2)}$, \dots , $B^{(l)}$ ($l = 3, 4, \dots, 16$ [not 30]) collapsed into the state $|\Psi_6^+\rangle$ after Alice's measurements, the probability of the 16 [not 16] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to $w_{(i)}$ ($w_{(i)} > w_{(2)}$, $l = 3, 4, \dots, 16$ [not 30]) after Bob's measurements, in the cases in which at least one qubit $B^{(k')}$ in the state $|\Psi_6^+\rangle$ (*i.e.*, in the 22% [not 38%] cases), the probability of the 16 [not 30] qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to W ($W \ge 1.6$ [not 2.5]) after Bob's measurements, where $W \in \{\omega_{(j)}: j = 1, 2, \dots, 16\}$ [not 30].

On page 76, Section 3, second paragraph:

To ensure the result of Bob's measurements more reliable, it can be further supposed that Alice and Bob share 40 entangled states groups (ESGs), each consisting of 16 [not 30] seven-qubit GHZ states $|G^{(k)}\rangle$ (see Eq. (11)). If Alice's measurements are the CPMs, it is easy found that, after Alice's and Bob's measurements, the probability of all qubits $B^{(k)}$ of each ESG in the state $|0\rangle$ or $|1\rangle$ will be still in the ratio of one to one. If Alice's measurements are the SPMs, by statistics theory, after Alice's and Bob's measurements, in 8 [not 15] ESGs the probability of the qubits $B^{(k)}$ of each ESG in the ratio of one to W ($W \ge 1.6$ [not 2.5]).

On page 76, Section 3, third paragraph:

As described above, one can see that, in this scheme, at the appointed time t, Bob should measure his qubits $B^{(k)}$ all in the basis $\{|0\rangle, |1\rangle\}$. If Alice employs the CPMs on her qubits, after Bob's measurements, the probability of all qubits $B^{(k)}$ in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to one. If Alice's measurements are the SPMs, after Bob's measurements, in 8 [not 15] of the 40 ESGs the probability of the qubits $B^{(k)}$ of each ESG in the state $|0\rangle$ or $|1\rangle$ will be in the ratio of one to W ($W \ge 1.6$ [not 2.5]). In accordance with these outcomes, Bob can discriminate that the measurements employed by Alice are CPMs or SPMs. Thus, the LQMD is completed successfully.

On page 76, Section 4, first paragraph:

- [···], either EDS is composed of 40 ESGs and each ESG consisting of 16 [not 30] seven-qubit GHZ states, which [···]. On page 77, Section 4, first paragraph:
- [...], where i = 1, 2, j = 1, 2, ..., 40, and k = 1, 2, ..., 16 [not 30], and [...]. The correction of these mistakes does not affect the results and conclusion of the original paper.