
Abstract Let the model for the mass ratio of the proton to the electron
begin with three objects: a ball of radius one; a line interval of length 4π;
and, a gravitational force field

(
~Fg

)
, having a singularity. From these three

objects we construct a ball of radius R = (4π−1/π) with a volume ejected of
(4π/3) · [(1/π2)(4π−1/π)], due to rotational relativistic effects. If we assume
that the electron is a ball of radius one, then the mass ratio of the proton to
the electron is approximated by

Mp/Me = (4π)(4π − 1/π)(4π − 2/π) = 1836.15 (A)

This model also gives insight to the experimentally observed “shifting shape”
of the proton. Finally, the model explains how the approximation given in
Equation (A) is the Greatest Lower Bound (GLB) on the mass ratio of the
proton to the electron.

The Model It is not unreasonable to assume that an electron is a ball. A
ball in the sense of being a solid sphere. For convenience, set the radius of
the electron to equal one. (That is, re = 1.) This model consists of three
objects: a ball of radius one; a line interval of length 4π; and, a gravitational
force field

(
~Fg

)
, having a singularity. The line segment is attached, tangent

to the ball, at one endpoint.
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Figure 1: Ball and Stick to Scale

Let O be the attachment point of the line interval to the ball. LetR = 4π
and let B denote a ball centered at O with radius R. The line segment and
unit ball are displayed in Figure 1: Ball and Stick to Scale.
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Figure 2: Creating the Ball with R = 4π
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Once and for all, let O be the origin of a coordinate system. Now consider
the region (B) swept out by the rapid, random motion of the line interval
of length R about O. This is depicted in Figure 2: Creating the Ball with
R = 4π. The ball with unit radius, attached to the 4π line interval, sweeps
out a ball centered at the origin O which has radius r = 2.
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Figure 3: Singularity; Balls, Radii 4π, 2, and π−1

The Inversion of the Spheres The gravitational singularity, denoted by
the asterisk (∗), and generating a force field

(
~Fg

)
, induces an inversion about

the reference sphere centered at O and radius r = 2. We observe that in this
inversion of the spheres that the entire region outside ball B is mapped into
the ball centered at O with radius π−1. Let b denote the ball having center
at O and radius π−1. (See Figure 3: Singularity; Balls, Radii 4π, 2, and
π−1.)
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Figure 4: Singularity At Center Ball B
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The gravitational attraction of the singularity centered at O collapses the
ball b to a near point mass. This contraction of R gives rise to the reduced
radius R = (4π − π−1) and the corresponding ball B centered at O with
radius R. In fact, it would appear to draw B to a single point; however,
the gravitational attraction of the singularity induces the centrifugal force in
the ball B; moreover, singularity cannot induce unlimited angular velocity of
rotation. Special relativity says v = ‖~v‖ = ‖~r× ~ω‖ < c, where c is the speed
of light in free space, v is the tangential velocity, ~r is the position vector, and
~ω is the angular velocity. This bounds the angular rotation ω = ‖~ω‖.
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# 6z-axis with rotation ω

B q
Figure 5: Absorbing the Ball b

The gravitational force field
(
~Fg

)
has a singularity which, when located

in the ball b absorbs the ball b. As B begins to collapse under the influence
of ~Fg, the gravitational field induces rotation (ω). Since nothing can travel
faster than c, the speed of light in free space, the angular velocity ω in B
is bounded. Let the z-axis be the axis of rotation. Compare this to the
accretion disk of a black hole in astronomy. Also notice the parabolic shape
of rotating liquid in a cylinder.
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Figure 6: Rotating the Reduced Ball B

The Claim Claim that the singularity in the gravitational field collapses B
to a ball B with radius (4π − π−1) and ejects a quantity of volume equal to
(4π/3) [π−2 · (4π − π−1)] by centrifugal force. This volume amount defines
the ratio

(4π/3)(4π − π−1)3 − (4π/3)π−2(4π − π−1)

(4π/3) · 1
= 1836.15

(
4π − 1

π

)3

− 1

π2

(
4π − 1

π

)
= 1836.15 (1)

(4π)
(

4π − 1

π

)(
4π − 2

π

)
=
(

4π − 1

π

)3

− 1

π2

(
4π − 1

π

)
(2)
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Figure 7: Singularity (∗) Center of B

Remark The model consists of a ball of radius (4π − π−1) from which a mass
of volume (4π/3) · [π−2 (4π − π−1)] is removed. A candidate for this removed
mass is the prolate ellipsoid with axes {(4π − π−1) , π−1, π−1}. Other candi-
dates include the spherical sector and the spherical wedge. We will give an
argument for the prolate ellipsoid. The spherical sector and spherical wedge
for the removed mass also offer a surface area for their curved surfaces of
(4π) · (π−2) = 4/π. One possibility is that the proton is a “shape shifter,”
transitioning from one candidate to another. The effect is that the proton
surface changes form, as observed by different scattering patterns.

Spherical Sector It is defined to be union of a spherical cap and the cone
formed by the apex of the sphere and the base of the cap. If the radius of
the sphere is denoted by R and the height of the cap by h, the volume of the
spherical sector is

Vs =
2πR2h

3
The surface area of the curved surface

As = 2πRh

If the volume of the spherical sector (Vs) and the radius R are known, then
the area (As) can be calculated by

As =
3Vs
R

(3)

Prolate Ellipsoid Let R > r > 0. A prolate ellipsoid is a surface obtained
by rotating an ellipse about its major axis, R. The minor axes are {r, r}.
The volume of a prolate ellipsoid is Ve = (4π/3)Rr2.

Spherical Wedge A spherical wedge (or ungula) is a portion of a ball
bounded by two plane semi-disks. Let R be the radius of the ball and α
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be the dihedral angle. The volume of a spherical wedge is

Vw =
α

2π
· 4

3
πR3 =

2

3
αR3.

The surface area of the lune corresponding to the same wedge is given by

Aw =
α

2π
· 4πR2 = 2αR2 =

3

R
Vw

An Exercise Claim Vs = Vw ⇐⇒ As = Aw.

An Exercise Let B be a closed ball with center at the origin O and radius
R. Rotate the ball B about the z-axis. Assume that the surface of the
ball B is uniformly compressed inwards by a nearby gravitation singularity
~Fg and that the centrifugal force ~Fc creates a vacuum about the z-axis by
compression of the interior of B. Show that the shape of the vacuum created
by rotation is a prolate ellipsoid. (See Figure 6: Rotating the Reduced Ball
B.)

A Solution Let B be a ball centered at the origin O with radius R. Let the
z-axis be the axis of rotation and let the centrifugal force along the x-axis
be denoted by ~Fc. We have the formula

~Fc = mxω2 î

where m is a particle of mass and ω is the angular velocity of the rotating
(liquid) interior of B. Since nothing can travel faster than c, the speed of
light in free space, the angular velocity ω in B is bounded.

m =
m0√

1− β2
β =

v

c
β2 =

ω2x2

c2

Let ~Fg be the gravitation vector. We define g =
∥∥∥~Fg

∥∥∥ and m0
~Fg = m0Gx̂i +

m0Gzk̂. ~F = ~Fc−m0Gx̂i. The angle α is the angle made between ~F and ~Gz.

tan(α) =
mxω2 −m0Gx

−m0Gz

= − F

Gz

(4)

Ansatzes We make the Ansatzes that Gx/Gz = (c2/g)δ(x),∫ x

0
(Gx̃/Gz) dx̃ =

∫ x

0
(c2/g)δ(x̃)dx̃ = c2/g
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and that Gz = −g. Observe that m0 appears in both the numerator and
denominator of Equation (5) and therefore cancel each other.

dz

dx
= tan(α) =

xω2

−g ·
√

1− (ω2x2)/c2
+
Gx

Gz

(5)

z(x) =
∫ x

0

x̃ω2 dx̃

−g ·
√

1− (ω2x̃2)/c2
+
∫ x

0

Gx̃

Gz

dx̃ (6)

z(x) =
∫ x

0

x̃ω2 dx̃

−g ·
√

1− (ω2x̃2)/c2
+
c2

g
(7)

z(x) =
c2

g

√1− x2ω2

c2
− 1

+
c2

g
(8)

The above relation defines the region of an ellipse. This is a relation for the
planar ellipse. It generalizes to a prolate ellipsoid. Recall that v = Rω < c,
where c is the speed of light in free space, ω is the angular velocity, v is the
tangential velocity, and R is the radius vector. Also, 0 ≤ v = ‖~ω × x̂‖ < c.

Algebra We work out and present the quadratic equation for the prolate
ellipsoid.

z =
c2

g

√1− x2ω2

c2


g

c2
z =

√1− x2ω2

c2


(
g

c2
z
)2

= 1− x2ω2

c2(
g2

c4

)
z2 +

(
ω2

c2

)
x2 = 1

z2

c4/g2
+

x2

c2/ω2
= 1

More generally,
z2

c4/g2
+

x2

c2/ω2
+

y2

c2/ω2
= 1
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