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The α-Discounting Method was developed to be an alternative to and extension of the Analytical Hierarchy Process
(AHP) to solve multi-criteria decision-making (MCDM) problems with non-commensurable and conflicting criteria. In
contrast to the AHP, this method works not only for pairwise comparisons but also for n-wise comparisons if relative
importance of criteria can be expressed in a system of linear homogenous equations. This method also has a comparative
advantage as it can transform those MCDM problems, classified as inconsistent by the AHP, into a consistent form. This
study briefly compares the two methods and then develops the Fuzzy α-Discounting Method for Multi-Criteria Decision
Making (Fα-DM MCDM). Two illustrative fuzzy MCDM problems from the literature have been solved to show how
the Fα-DM MCDM works.
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1. Introduction

It is not an easy task for a decision maker to choose
from among the alternatives s/he has because the deci-
sion-making process mostly includes multiple criteria
with different directions instead of a mono-criterion with
one direction. The conflict situation which the decision
maker faces emerges while reaching a comprehensive
judgment as a result of balancing the criteria that are
competing with each other and which are oriented
toward multiple goals (Belton and Stewart 2003). This is
a fundamental problem in multi-criteria decision-making
(MCDM) known as the aggregation problem (Roy
2005). As decision-making problems involve criteria that
are non-commensurable (different units) and conflicting
(competing with each other), the MCDM gains impor-
tance from the view point of decision makers as it pro-
vides the tools and techniques that balance those
multiple criteria (Belton and Stewart 2003).

The MCDM methods proposed in the literature have
both advantages and disadvantages. Analytical Hierarchy
Process (AHP), as one of the most used MCDM meth-
ods, facilitates the structuring of the decision-making
problems through a hierarchical approach; yet, it has
received criticisms including that by Dodd, Donegan,
and McMaster (1995) for the arbitrary measure of con-
sistency proposed in the method. In the scope of this
paper, the development of Fuzzy α-Discounting Method
for Multi-Criteria Decision Making (Fα-DM MCDM) for
pairwise comparisons using linguistic variables (variables
whose underlying values are derived from verbal prefer-
ence statements) has been motivated by this criticism

from Dodd, Donegan, and McMaster (1995). In the case
of exceeding the inconsistency threshold of 10% in the
AHP, the analysts need to return back to the decision
maker(s) and repeat all the procedures to get corrected
preference statements of the decision maker(s) to present
an acceptable final output.

Besides the burden of overcoming the inconsistency
issue, the analysts may sometimes need to work with
decision makers who prefer to express relationships
among criteria through verbal (fuzzy) statements instead
of crisp numerical values. In this respect, the main objec-
tive of this paper is to develop a novel method that
ensures consistency for the preference statements of the
decision makers that are reflected in decision matrices of
the fuzzy MCDM problems with pairwise comparisons.
To reach this objective, we have chosen to widen the
scope of the α-Discounting Method (α-D) for MCDM
developed by Smarandache (2010), an alternative to and
extension of the AHP (Saaty 1972) to solve linear deter-
ministic MCDM problems by assuring consistency for
the decision matrices of concern, as a basis for the
development of the aforementioned method for fuzzy
decision matrices constructed both in single person and
group decision-making settings. Another objective of this
paper is to also integrate a revised version of a novel
defuzzification method (Converting Fuzzy Data into
Crisp Scores Method – CFCS – developed by Opricovic
and Tzeng (2003)) in the aforementioned method to
obtain the crisp weights that are assigned to the criteria
in the end. Applicable to both the mixed set of crisp and
fuzzy numbers, the defuzzification method CFCS has
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advantages in treating the triangular fuzzy numbers
(TFNs) with the same mean.

The Fα-DM MCDM proposed in this paper
contributes to the MCDM literature by expanding
Smarandache’s (2010) method to include fuzzy MCDM
problems and to ensure consistency for the constructed
fuzzy decision matrices which was only possible for
weakly inconsistent linear deterministic MCDM prob-
lems with pairwise comparisons. The Fα-DM MCDM
deals with the fuzzy MCDM problems, constructed with
TFNs within the scope of this paper, by first decompos-
ing the fuzzy decision matrices into three separate (l),
(m), and (u) matrices that constitute the respective fuzzy
numbers from the lower boundary, most likely, and
upper boundary fuzzy values, respectively. These fuzzy
matrices are then checked for consistency by testing if
the determinant (det) of the respective matrix equals 0.
In the case of det = 0, the matrix is said to be a consis-
tent matrix. In the contrary situation (where det ≠ 0), the
matrix is found to be an inconsistent matrix and needs to
be either discounted or increased with the α coefficient.
During the formation of the fuzzy decision matrix
through the linguistic variables assigned to the criteria
by the decision maker, it is not expected that the deci-
sion maker assigns linguistic variables fully consistent
with all pairwise comparisons. This is either due to the
size of the MCDM problem, environmental conditions
surrounding the decision maker that may influence her/
his rationality, or her/his partial knowledge of the factors
concerning the MCDM problem that may hinder her/him
in assigning linguistic variables to criteria pairs consis-
tent with others in the fuzzy decision matrix. In this
respect, consistency is needed to ensure valid results
from the solution of the MCDM problem of concern. By
applying Fα-DM MCDM in inconsistent linear fuzzy
decision matrices, there is a high likelihood of assuring
consistency for the decomposed fuzzy matrices at an ini-
tial stage while solving the fuzzy MCDM problem. After
the multiplication of the matrix elements above the
diagonal with testing the α coefficient, the new matrix is
rechecked to see if it gives det = 0. Provided that all
matrices give det = 0, defuzzification is applied to have
the crisp criteria weights. In the next section, we intro-
duce, in detail, the consistency/inconsistency of an
MCDM problem within the context of this paper. We
briefly compare the original α-D MCDM and AHP, and
then introduce the Fα-DM MCDM for pairwise compar-
isons in a fuzzy setting. Then, we solve two illustrative
fuzzy MCDM problems from the literature to show how
the Fα-DM MCDM works.

2. α-Discounting Method for MCDM

Developed by Smarandache (2010), the α-Discounting
Method for Multi-Criteria Decision Making (α-D

MCDM) is an alternative to and extension of the AHP
whose foundations were laid by Miller (1966) who
formulated criteria under a hierarchy for the first time.
This was then advanced by Saaty (1972) under the name
AHP. In contrast to the AHP which can only deal with
pairwise comparisons, α-D MCDM can handle any
n-wise (with n ≥ 2) comparisons of criteria in the form
of linear homogeneous equations.

2.1. Classification of linear decision-making problems

In α-D MCDM, decision-making problems which can be
expressed as linear homogeneous equations are divided
into three groups based on their consistency levels
(Smarandache 2010):

(i) Consistent linear decision-making problems: Any
substitution of a variable xi from an equation into
another equation returns a result in agreement
with all equations.

(ii) Weakly inconsistent linear decision-making prob-
lems (WD): In this type of problems, at least one
substitution of a variable xi from an equation into
another equation returns a result in disagreement
with at least another equation in the following
ways:

WDð1Þ xi ¼ k1 � xj; k[ 1;
xi ¼ k2 � xj; k2 [ 1; k2 6¼ k1

� �
(1)

or

WDð2Þ xi ¼ k1 � xj; 0\k1\1;
xi ¼ k2 � xj; 0\k2\1; k2 6¼ k1

� �
(2)

or

WDð3Þ xi ¼ k � xi; k 6¼ 1f g: (3)

(iii) Strongly inconsistent linear decision-making
problems (SD): In this type of problems, at least
one substitution of a variable xi from an equa-
tion into another equation results in disagree-
ment with at least another equation in the
following way:

SDð4Þ xi ¼ k1 � xj;
xi ¼ k2 � xj;

� �
while 0\k1\1\k2

or 0\k2\1\k1:

(4)

2.2. Procedural steps for α-D MCDM

α-D MCDM transforms an inconsistent decision-making
problem into a consistent state by discounting/increasing
the linear judgment scale coefficients at/to some values.
The procedural steps for α-D MCDM can be described
as follows (Smarandache 2010):
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(1) Let C = {C1, C2, … , Cn}, n ≥ 2, be a set for
the hierarchical components (criteria and alterna-
tives). Get the relationships from the decision
maker(s) first for the criteria and then the alterna-
tives and form the preference statements set, P =
{P1, P2, … , Pm}, m ≥ 1. Each preference Pi is a
linear homogeneous equation of the criteria C1,
C2, … , Cn: Pi = f(C1, C2, … , Cn). For the
weights of the hierarchy components, let us con-
struct a basic belief assignment (bba): m: C →
[0, 1] such that m(Ci) = xi, 0 < xi < 1 andPn

i¼1 m Cið Þ ¼ Pn
i¼1 xi ¼ 1. Consequently, the

total weight of the hierarchy components in their
own group equals 1.

(2) Find all variables xi in accordance with the set of
preferences P to get an m × n linear homoge-
neous system of equations whose associated
matrix is A = (aij), 1 ≤ i ≤ m and 1 ≤ j ≤ n. In
order for this system to have nontrivial solutions,
the rank of the matrix A should be strictly less
than n.

(3) Calculate the determinant of matrix A, det(A).
(4) If det(A) = 0, then the decision problem is found

to be consistent as the system of equations is
dependent. There is no need to parameterize the
system with α. In the case of parameterization,
use the Fairness Principle to set all parameters
equal a1 ¼ a2 ¼ � � � ¼ ap ¼ a[ 0. Solve the
system to find a general solution. Replace α
parameters and secondary variables,1 to reach a
particular solution. Obtain the priority vector; i.e.
corresponding eigenvector for the maximum
eigenvalue, by normalizing the particular solu-
tion.

(5) If det(A) ≠ 0, then the decision problem is found
to be inconsistent as the homogeneous linear sys-
tem has only a trivial solution. Based on the type
of inconsistency, go to either step 6 or step 7.

(6) If the linear decision-making problem is weakly
inconsistent, then parameterize the right-hand side
coefficients, and denote the system matrix A(α).
Compute the α values which makes det(A(α))
equal 0 in order to get the parametric equation (If
the Fairness Principle is used, set all parameters

equal to each other and solve for α > 0). Replace
α in A(α), and solve the resulting dependent
homogeneous linear system. Similarly as in step
4, replace each secondary variable by 1, and nor-
malize the particular solution to get the priority
vector.

(7) If the linear decision-making problem is
strongly inconsistent, get more information from
the decision-maker(s) to remove inconsistencies
found in the decision-making problem. In
strong inconsistency situation, the Fairness
Principle may not work properly. Another
principle should be considered to deal with the
inconsistencies.

In weak inconsistent decision-making problems,
where α-D MCDM/Fairness Principle is used, the degree
of consistency and inconsistency of the decision-making
problem at the initial stage is calculated based on the α
value obtained as follows (Smarandache 2010):

• If 0 < α < 1, then α is the degree of consistency
and β = 1 – α is the degree of inconsistency of the
decision-making problem.

• If α > 1, then 1/α is the degree of consistency and
β = 1 – (1/α) is the degree of inconsistency of the
decision-making problem.

2.3. A comparison of AHP and α-D MCDM

The following have been stated for the comparison of
AHP and α-D MCDM by Smarandache (2010):

(1) For consistent decision-making problems, AHP
and α-D MCDM/Fairness Principle give the same
result.

(2) The general solution of α-D MCDM includes all
particular solutions, that of AHP as well.

(3) α-D MCDM is not restricted to pairwise compar-
isons, it can also use n-wise comparisons
between criteria.

(4) α-D MCDM also works for preferences that can
be transformed into homogeneous nonlinear
equations and/or inequalities.

Table 1. Fuzzy numbers corresponding to linguistic variables.

Intensity of fuzzy scale Definition of linguistic variables Fuzzy number Value

1
�

Similar importance (L, M, U) (1, 1, 1)

3
�

Moderate importance (L, M, U) (2, 3, 4)

5
�

Intense importance (L, M, U) (4, 5, 6)

7
�

Demonstrated importance (L, M, U) (6, 7, 8)

9
�

Extreme importance (L, M, U) (8, 9, 9)

2
�
, 4

�
, 6
�
, 8

�
Intermediate values (L, M, U) (_, _, _)
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Despite its widespread usage, AHP has received
many criticisms, including but not limited to (i) AHP not
being a valid methodology as additive and multiplicative
operations are not applicable on AHP scale values which
are also arbitrarily determined (Barzilai 2010); (ii) the
problem of rank reversal that may arise during decom-
position and aggregation of hierarchic structures (Belton
and Gear 1983); and (iii) an arbitrary measure of consis-
tency (Dodd, Donegan, and McMaster 1995). Although
the first and second criticism may also be valid for the
α-D MCDM, this novel method does provide a new
approach to assure consistency for the whole pairwise
comparison process.

3. Fuzzy α-Discounting Method for MCDM

In this section, the Fuzzy α-Discounting Method for
Multi-Criteria Decision Making (Fα-DM MCDM) is
introduced after background information on the fuzzy set
theory is given. Then, illustrative examples from the
literature are given to show how Fα-DM MCDM is used.
Fuzzy AHP (FAHP) had been used to reach a solution in
the original problems found in illustrative examples.
Unlike the crisp version of AHP, various researchers
have proposed different FAHP methods which systemati-
cally approached the selection and justification problem
of alternatives using fuzzy set theory and hierarchical
structure analysis, and yet it is still not clear which one
of these FAHP methods is preferable to others (Demirel,
Demirel, and Kahraman 2008).

3.1. Fuzzy set theory

A fuzzy set is characterized by a membership function
which assigns to each object in the set its grade of mem-
bership within the real unit interval [0, 1] (Zadeh 1965).
A value of 0 indicates the object is not a member of the
given set, while a value of 1 shows that the object fully
belongs to the given set. Values between 0 and 1 imply
graded degrees of membership.

Another feature that distinguishes the fuzzy set the-
ory from the classical set theory is the use of linguistic
variables that derive their value not from numbers, but
from words or sentences in a natural or artificial lan-
guage. A linguistic variable is formally characterized by
a five-tuple consisting (x, T(x), U, G, M) where x is the

name of variable; T(x) is the term set of x (collection of
linguistic values of x); U is the universe of discourse; G
is a syntactic rule generating the terms in T(x); and M is
a semantic rule associating with each linguistic value x
its meaning (Zadeh 1975).

Representing the extension of the confidence inter-
vals concept, fuzzy numbers are fuzzy subsets of the set
of real numbers ℝ. According to the definition, a fuzzy
number Ã belonging to a fuzzy set and whose member-
ship function is represented with x is denoted as follows
(Dubois and Prade 1978):

l~A xð Þ : R ! 0; 1½ � ð05 l~A xð Þ5 1; x 2 XÞ (5)

and has the following properties:

(1) μÃ(x) is a piecewise continuous function from the
set of real numbers to the [0, 1] closed interval.

(2) μÃ(x) is a convex fuzzy subset. In this case, the
membership degree for the increasing values of x
is either monotonously increasing/decreasing or
first monotonously increasing then monotonously
decreasing.

(3) μÃ(x) is the normalized state of a fuzzy subset. In
this case, it is sufficient that the membership
degree is 1 for at least one element.

In MCDM problems, TFNs are frequently used as
they are handled easily in computations. TFN is charac-
terized with three value judgments (l, m, u) where l
represents the lower bound, m represents the mod (or
most likely value), and u represents the upper bound.
The membership function of a TFN is expressed as
follows:

Figure 1. Membership function for TFNs.

Table 2. Fuzzy pairwise comparison of each criterion.

Quality criteria Durability (D) Aesthetics (A) Reliability (R1) Reputation (R2)

Durability (D) 1, 1, 1 2, 3, 4 1/6, 1/5, 1/4 6, 7, 8
Aesthetics (A) 1/4, 1/3, 1/2 1, 1, 1 1/8, 1/7, 1/6 1, 2, 3
Reliability (R1) 4, 5, 6 6, 7, 8 1, 1, 1 8, 9, 9
Reputation (R2) 1/8, 1/7, 1/6 1/3, 1/2, 1 1/9, 1/9, 1/8 1, 1, 1
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l~AðxÞ ¼
ðx�lÞ=ðm�lÞ if l� x�m;
ðu�xÞ=ðu�mÞ if m� x� u;

0 otherwise:

8<
: (6)

A graphical representation of the membership func-
tion for TFNs is displayed in Figure 1.

Based on the properties and extended definitions of
fuzzy numbers, the algebraic operations for two TFNs,
Ã1 = (l1, m1, u1) and Ã2 = (l2, m2, u2), and a positive
real number r are done in the following way:

• Summation (�): Ã1 � Ã2 = (l1 + l2, m1 + m2, u1 +
u2)

• Subtraction (� ): Ã1 � Ã2 = (l1 – u2, m1 – m2, u1
– l2) li, mi, ui > 0

• Multiplication (	): Ã1 	 Ã2 = (l1l2, m1m2, u1u2)
• Multiplication of a real number r with a TFN:
r 	 Ã1 = (rl1, rm1, ru1) r, li, mi, ui > 0

• Division (⊘): Ã1 ⊘ Ã2 = (l1/u2, m1/m2, u1/l2)
• Inversion: Ã1

1 = (1/u1, 1/m1, 1/l1) li, mi, ui > 0

3.2. Single person decision-making with Fα-DM
MCDM

In this section, we introduce the Fα-DM MCDM algo-
rithm for decision-making problems with one single
decision maker. Within the concept of single person
decision-making with Fα-DM MCDM, the preference
statements of a single decision maker is obtained through
a questionnaire that includes questions for pairwise com-
parisons among the criteria of concern. As the number
of criteria/alternatives increases, there is an inclination
for an inconsistent outcome (Olson et al. 1995) based on
the increasing complexity of the decision-making prob-
lem. In this respect, the algorithms proposed in this
paper are both for the single person and group decision-
making settings. The probability of returning to the deci-
sion maker(s) to give preference statements as a result of
an inconsistent outcome is highly reduced thanks to the
α coefficient(s) calculated within the procedure of the
algorithms. In the case of ending up with more than one
α coefficient, the proposed algorithms also do not differ-
entiate between them and take an average of the weights
that are obtained after the multiplication of each α coeffi-
cient with the respective fuzzy decision matrix. After

multiplication with α coefficients, the elements of the
fuzzy decision matrices should have values between 1/9
and 9 to be consistent with the intensity scale.

The procedural steps for the Fα-DM MCDM are as
follows:

(1) Structure the criteria of the decision-making
problem under a hierarchy.

(2) Given the linguistic variables with determined
scales, and their corresponding fuzzy importance
grades; collect the subjective preference state-
ments of the decision maker among the criteria
and construct the pairwise fuzzy decision
matrix.

(3) Assuming that the fuzzy importance grades are
TFN, group the pairwise fuzzy decision matrix
in three matrices; i.e. (l) lower bound, (m) most
likely, and (u) upper bound value matrix,
respectively.

(4) Reorder the elements of these (l), (m), and (u)
matrices such that the above cells of the diago-
nal contain the lower bound, most likely, and
upper bound values in lij, mij, and uij, respec-
tively of the respective TFN.

(5) Calculate determinants for (l), (m), and (u)
matrices. If obtained determinant values equal 0,
then the respective matrices are found to be con-
sistent. Calculate the weights of the criteria by
first normalizing the column values and then
taking averages of the row column values of the
respective normalized matrices.

(6) If det ≠ 0 in any of the matrices created in step
5, then the respective matrix/matrices is/are
inconsistent. Find the α > 0 values resulting in
det = 0 in inconsistent matrix/matrices based on
the Fairness Principle.

(7) If the solution set for the α coefficient obtained
in step 6 has:

(a) Only one element, multiply the upper part
of the matrix diagonal with α and bottom
with 1/α. Test if the new values result in
det = 0. If the matrix is consistent, then
calculate the weights of the criteria.

(b) More than one element, choose the α value
based on the following:

• For 0 < α < 1 values, select the max α
value as the degree of consistency for the
original MCDM problem (α) is the highest.

• For α > 1, select the min α value as the
degree of consistency for the original
MCDM problem (1/α) is the highest.

Table 3. Matrix (l) constructed from the fuzzy pairwise com-
parison.

(l) D A R1 R2

D 1 2 1/6 6
A 1/2 1 1/8 1
R1 6 8 1 8
R2 1/6 1 1/8 1
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• For the above cases, the selected α value
should not make the matrix elements exceed
the 1–9 scale after the multiplication pro-
cess. If such a case occurs, select other α
values, which will yield a new matrix not
exceeding the 1–9 scale or the minimum
number of matrix elements exceeding the
1–9 scale after multiplication.

Test if the new values result in det = 0. If the matrix
is consistent, then calculate the weights of the criteria.

(8) Apply a defuzzification method on the fuzzy
weights obtained from the new (l), (m), and (u)
matrices to get the final weights for each crite-
rion.

In this paper, we used a revised version of the CFCS
(Converting Fuzzy Data into Crisp Scores) Method
developed by Opricovic and Tzeng (2003). CFCS is
developed in a manner similar to the work of Chen and
Hwang (1992). CFCS can produce defuzzified numbers
corresponding to the fuzzy weights using a similar
approach that finds left and right scores through fuzzy
min and fuzzy max and the total score is determined as
a weighted average according to the membership func-
tions. CFCS is also applicable to the mixed set of crisp
and fuzzy criteria. Revision in the form of weight rank-
ing for criteria in an ascending order is required because
the weights in the form of lij < mij < uij are not always
available. The procedural steps of the revised version of
CFCS are as follows:

(1) For each criterion, sort the fuzzy (l), (m), and
(u) weights in an ascending order.

(2) Normalization:
imax = maxij, i

min = minij D
max
min = maxij – minij

compute for all alternatives aj, j = 1, … , J
xlj = (lij – imin)/Dmax

min xmj = (mij − imin)/Dmax
min

xrj = (rij − imin)/Dmax
min

(3) Compute left (ls) and right (rs) normalized val-
ues, for j = 1, … , J

xlsj = xmj/(1 + xmj – xlj) xrsj
= xrj/(1 + xrj – xmj)

(4) Compute total normalized crisp value:
xcrispj ¼ ½xlsj ð1� xlsj Þ þ xrsj x

rs
j �=½1� xlsj

þxrsj � for j ¼ 1; . . .; J
(5) Compute crisp weight values, for j = 1, … , J

fij = imin + Dmax
min wij = fij/∑fij

3.2.1. Illustrative example

As an illustrative example, we took the same example
found in the work of Tzeng and Huang (2011) that was
solved using fuzzy AHP. To compute the α values, we
used SymPy (2012), an open-source Python library for
symbolic mathematics. In brief, the problem mentions a
decision maker in a company who wants to determine
criteria weights for an optimal product quality based on
appropriate budget allocation. The criteria to evaluate are
durability, esthetics, reliability, and reputation. The fuzzy
pairwise comparison matrix is shown in Tables 1 and 2:

The proposed Fα-DM MCDM is applied beginning
from step 4 as follows:

• Construct the (l), (m), and (u) matrices in an
orderly way as shown in Tables 3–5:

• Compute det(l), det(m), and det(u):

det(l) = 0 Consistent matrix. Normalized criteria
weights = [0.1974, 0.0748, 0.6638, and 0.0640].

det(m) = 0.078609221 and det(u) = –0.399305556.
Apply α-D MCDM to transform (m) and (u) matrices
into consistent ones.

• Apply α-D MCDM on (m) and (u):

We ran the following SymPy pseudocode to find α
values that give det(m) = 0

>>> import matrix library
>>> equalize x as an unknown variable
>>> construct the matrix “M” with elements from

(m) that are multiplied by x for those found in the upper
diagonal and by 1/x for the lower diagonal

>>> solve for the α coefficients making det(M) = 0
The solution set for α is found as [14/9, 35/9, 7/6,

and 7/15]. Among them 7/6 is the α value after whose
multiplication with matrix elements (matrix elements
over the diagonal are multiplied with 7/6 and below the
diagonal with 6/7) yields only one matrix element to
exceed the 1–9 scale and the criteria weights = [0.2558,
0.0898, 0.6119, and 0.0425]. After the application of the
same procedure for (u), the solution set for α is found as
[2, 3/8, 32/9, and 2/3] among which 2/3 is chosen as its
multiplication with matrix elements does not cause them
to exceed the 1–9 scale. The criteria weights = [0.2056,
0.0855, 0.6470, and 0.0620].

Table 4. Matrix (m) constructed from the fuzzy pairwise com-
parison.

(m) D A R1 R2

D 1 3 1/5 7
A 1/3 1 1/7 2
R1 5 7 1 9
R2 1/7 ½ 1/9 1

6 A. Karaman and M. Dagdeviren
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• Defuzzify the obtained weights for each criterion
with the revised CFCS (RCFCS) method:

(1) After sorting in an ascending order, normalize
the fuzzy criteria weights given in Table 6:

imax =0.66380 imin = 0.0425 Dmax
min = 0.6213

(Table 7)
(2) Compute left and right scores (ls, rs): Table 8
(3) Compute total normalized crisp value:

xcrispj = [0.2767, 0.0687, 0.9697, and 0.0306]
(4) Compute crisp weight values:

fij = [0.2144, 0.0851, 0.6450, and 0.0615]
and wij = [0.2131, 0.0846, 0.6412, and 0.0611]

In the original problem, Tzeng and Huang used the
geometric mean method to find the fuzzy weight vector
and the center of area method to defuzzify the weight
vector into crisp values. They computed the weights
assigned to each criterion as [0.2278, 0.0898, 0.6572,
and 0.0498] amounting to a total of 1.0246. Although
the weights computed with Fα-DM MCDM, [0.2131,
0.0846, 0.6412, and 0.0611], result in the same ranking
(R1 > D > A > R2) as FAHP did, the weights are lower
for D, A, and R1, and only higher for R2 which is an
indication of different methods yielding different results.
However, it should be noted that due to the relatively
small size of the illustrative problem covered in this sec-
tion, the criteria rankings happened to be in the same
order in both methods. Also, the weights obtained as a
result of Fα-DM MCDM do not exceed the maximum
value of 1.

3.3. Group decision-making with Fα-DM MCDM

Fα-DM MCDM for a group decision-making situation is
applied in the same way as single person decision-
making with Fα-DM MCDM, with an additional
aggregation procedure for pairwise comparisons between
criteria from a group of decision makers. It should be

noted that the illustrative example covered in this paper
contains full information from the decision makers; how-
ever, the Fα-DM MCDM for group decision-making has
the potential to deal with missing information.

The procedural steps for Fα-DM MCDM in a group
decision setting are identical to the procedural steps in
single person decision setting with the following addition
in Step 2:

• Given the linguistic variables with determined
scales, and their corresponding fuzzy importance
grades; collect the subjective preference statements
from a group of decision makers among the criteria
to construct the pairwise fuzzy decision matrix.
Then, aggregate these matrices into a fuzzy syn-
thetic pairwise comparison matrix using the geo-
metric mean method suggested by Buckley (1985):

aij
� ¼

�
a1ij
�
	 � � � 	 anij

� �1=n

: (7)

3.3.1. Illustrative example

To illustrate the application of Fα-DM MCDM in a group
decision-making situation, we took another example
found in the work of Tzeng and Huang (2011) that was

Table 5. Matrix (u) constructed from the fuzzy pairwise com-
parison.

(u) D A R1 R2

D 1 4 1/4 8
A 1/4 1 1/6 3
R1 4 6 1 9
R2 1/8 1/3 1/9 1

Table 6. Fuzzy criteria weights.

l m u = r

D 0.1974 0.2056 0.2558
A 0.0748 0.0855 0.0898
R1 0.6119 0.6470 0.6638
R2 0.0425 0.0620 0.0640

Table 7. Normalized fuzzy criteria weights.

Normalized matrix l m r

D 0.2494 0.2625 0.3433
A 0.0521 0.0693 0.0762
R1 0.9166 0.9729 1.0000
R2 0.0000 0.0314 0.0346

Table 8. Left and right scores.

ls rs

D 0.2591 0.3177
A 0.0681 0.0757
R1 0.9210 0.9736
R2 0.0304 0.0345

Table 9. Linguistic variables and corresponding fuzzy numbers.

Linguistic variables LAb LVs LEs LWk LEq Eq Wk Es Vs Ab

Fuzzy numbers 9�1
�

7�1
�

5�1
�

3�1
�

1�1
�

1
�

3
�

5
�

7
�

9
�

TFN values 1
9 ;

1
9 ;

1
7

� �
1
9 ;

1
7 ;

1
5

� �
1
7 ;

1
5 ;

1
3

� �
1
5 ;

1
3 ; 1

� �
1
3 , 1, 1
� �

(1, 1, 3) (1, 3, 5) (3, 5, 7) (5, 7, 9) (7, 9, 9)
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solved using fuzzy AHP. To compute the α values, we
used MATLAB (2012), a numerical computing environ-
ment and fourth-generation programming language. In
brief, the problem is about the selection of a firm, after a
tender process, for the provision of engineering services
for the construction of a branch station of the Taipei City
Police Bureau. Five firms submitted proposals which will
be evaluated against six different criteria by three deci-
sion-making groups composed of five persons each. The
decision makers want to find the weights to be assigned
to these criteria. The linguistic variables used by the deci-
sion makers are given in Table 9 and the fuzzy pairwise
comparison matrices and corresponding triangular fuzzy
numbers for the five firms against six criteria are given in
Tables 10 and 11.

• To construct the fuzzy synthetic pairwise compar-
ison matrix from the matrices given above, the
geometric mean method is used:

aij
� ¼ a1ij

�
	 a2ij

�
	 a3ij

�
	 a4ij

�
	 a5ij

�� �1=5

. As an example,

a�12 in the fuzzy synthetic pairwise comparison
matrix is calculated as follows:

a12
� ¼ 1;3;5ð Þ	 1

5;
1
3;1

� �	 1
7;
1
5;
1
3

� �	 1
5;
1
3;1

� �	 1;3;5ð Þ� �1=5
¼ 1
1

5
1
7
1

5
1
� �1=5

; 3
1
3
1

5
1
3
3

� �1=5
; 5
1
1

3
1
5
� �1=5� 	

¼ 0:356;0:725;1:528ð Þ
(8)

The fuzzy synthetic pairwise comparison matrix is
shown in Table 12.

Table 10. Linguistic variable assignment to criteria for each
firm.

C1 C2 C3 C4 C5 C6

Firm1
C1 1 Wk Es Wk Eq Eq
C2 1 Wk Eq Eq Wk
C3 1 Eq LEs LEs
C4 1 LWk LWk
C5 1 Eq
C6 1
Firm2
C1 1 LWk Wk Eq Eq LWk
C2 1 Wk Wk Wk LWk
C3 1 LVs LVs LVs
C4 1 LWk LWk
C5 1 LWk
C6 1
Firm3
C1 1 LEs Eq Wk Eq LVs
C2 1 Wk Ab Vs LEs
C3 1 Es Wk LVs
C4 1 Eq LAb
C5 1 LVs
C6 1
Firm4
C1 1 LWk LEs Wk LVs Es
C2 1 Es Vs LAb Vs
C3 1 Wk LAb Wk
C4 1 LAb Wk
C5 1 Ab
C6 1
Firm5
C1 1 Wk Es LWk LVs LEq
C2 1 Wk LEs LVs LWk
C3 1 LVs LAb LEs
C4 1 LWk Wk
C5 1 Es
C6 1

Table 11. Corresponding fuzzy number assignment to each
firm.

C1 C2 C3 C4 C5 C6

Firm1
C1 1 3

�
5
�

3
�

1
�

1
�

C2 1 3
�

1
�

1
�

3
�

C3 1 1
�

5�1
�

5�1
�

C4 1 3�1
�

3�1
�

C5 1 1
�

C6 1
Firm2
C1 1 3�1

�
3
�

1
�

1
�

3�1
�

C2 1 3
�

3
�

3
�

3�1
�

C3 1 7�1
�

7�1
�

7�1
�

C4 1 3�1
�

3�1
�

C5 1 3�1
�

C6 1
Firm3
C1 1 5�1

�
1
�

3
�

1
�

7−1

C2 1 3
�

9
�

7
�

5�1
�

C3 1 5
�

3
�

7�1
�

C4 1 1
�

9�1
�

C5 1 7�1
�

C6 1
Firm4
C1 1 3�1

�
5�1
�

3
�

7�1
�

5
�

C2 1 5
�

7
�

9�1
�

7
�

C3 1 3
�

9�1
�

3
�

C4 1 9�1
�

3
�

C5 1 9
�

C6 1
Firm5
C1 1 3

�
5
�

3�1
�

7�1
�

1�1
�

C2 1 3
�

3�1
�

7�1
�

3�1
�

C3 1 7�1
�

9�1
�

5�1
�

C4 1 3�1
�

3
�

C5 1 5
�

C6 1
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• Apply steps from 5 to 7 as described above and
defuzzify the computed fuzzy criteria weights in
Table 13 by applying the RCFCS.

A comparison for the crisp criteria weights computed
through Fα-DM MCDM and FAHP is given in Table 14.

As in the ranking result in the single person decision-
making case, the ranking result in group decision-making
for Fα-DM MCDM and FAHP has been observed to be the
same. Both the FAHP and Fα-DM MCDM rank the criteria
as D5 > D2 > D6 > D1 > D4 > D3. As to the weights
assigned to criteria by FAHP, it has been observed that they
are higher than the weights assigned by Fα-DM MCDM.
The reason for having such a difference in weight assign-
ment is based on the different approaches in processing of
fuzzy numbers and application of different defuzzification
methods. It is a fact that Tzeng and Huang used best non-
fuzzy performance as a defuzzification method as a result of
which the assigned weights amounted to 1.289, exceeding
the total maximum value of 1.

4. Conclusion and further research

Beyond the perimeters of academic circles, the AHP
has been widely used by non-academicians due to its

structuring the decision-making problems in simple,
hierarchical application, usage of verbal preference
statements to denote the numerical scale of 1–9, and
setting a consistency level in MCDM problems. How-
ever, there are the criticisms of Barzilai (2010), Belton
and Gear (1983), and Dodd, Donegan, and McMaster
(1995) against AHP which we previously mentioned.
Furthermore, AHP can only handle pairwise compar-
isons and the number of these pairwise comparisons
increases enormously as the number of criteria/alterna-
tives increases. α-D MCDM not only responds to this
shortcoming by getting n-wise comparisons from the
decision-maker but also handles weak inconsistent deci-
sion-making problems (even above the AHP consis-
tency ratio (CR) of 10%). This study developed the
Fα-DM MCDM both for single person and group deci-
sion-making situations, which groups the TFNs of the
corresponding linguistic variables in (l), (m), and (u)
matrices in an ascending order by considering the val-
ues above the matrix diagonal. Although it might seem
unlikely in the first place, this emerges as a necessary
condition to ensure consistent allocation of the TFNs
from corresponding linguistic variables in relevant
matrices. Fα-DM MCDM then ensures the consistency
of the relevant matrix by applying the aforementioned
steps to reach a matrix determinant value of 0. As a
last step, RCFCS defuzzification method is applied to
obtain crisp values from the (l), (m), and (u) matrices.
Additionally, for the group decision-making situation in
Fα-DM MCDM, the geometric mean method has been
used to produce an aggregate synthetic fuzzy decision
matrix from the decision matrices obtained through
decision makers. Two MCDM problems previously
solved with FAHP taken from the literature have been
resolved with Fα-DM MCDM. Considering the solu-
tions, Fα-DM MCDM and FAHP have given the same
ranking but with different criteria weights in both single
and group decision-making settings. The reason for dif-
ferent criteria weights is due to the different handling
of fuzzy numbers and defuzzification methods used in
both methods.

As a further research venue, the Fα-DM MCDM is
capable of dealing with fuzzy MCDM problems with
missing information, and even in a group decision-making
setting, this novel method can include the preference

Table 12. Fuzzy synthetic pairwise comparison matrix.

SM C1 C2 C3 C4 C5 C6

C1 1 1 1 0.356 0.725 1.528 1.052 1.719 3.005 0.725 1.552 3.272 0.415 0.459 1.016 0.467 0.750 1.332
C2 1 1 1 1.246 3.323 5.348 1.380 2.068 3.323 0.573 0.803 1.310 0.491 0.859 1.719
C3 1 1 1 0.517 0.789 1.332 0.181 0.254 0.369 0.191 0.300 0.467
C4 1 1 1 0.245 0.333 0.844 0.339 0.644 1.290
C5 1 1 1 0.859 1.165 2.068
C6 1 1 1

Table 13. Fuzzy criteria weights computed with Fα-D MCDM.

l m u = r

C1 0.1407 0.1608 0.1991
C2 0.2052 0.2256 0.2267
C3 0.0705 0.0726 0.0845
C4 0.1004 0.1031 0.1076
C5 0.2299 0.2351 0.2745
C6 0.1641 0.1908 0.2086

Table 14. Crisp criteria weights according to Fα-D MCDM
and FAHP.

Fα-D MCDM FAHP

C1 0.1664 0.2000
C2 0.2237 0.2720
C3 0.0739 0.0940
C4 0.1043 0.1380
C5 0.2415 0.3220
C6 0.1902 0.2630
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statements in a mixed state both with perfect information
(i.e. all pairwise comparisons have been provided by the
decision makers), and with missing information before
aggregating them into a fuzzy synthetic decision matrix.
We also consider the MCDM problems with interval num-
bers to be included within the scope of further research.

Nomenclature
AHP Analytical Hierarchy Process
CFCS Converting Fuzzy Data into Crisp

Scores Method
det determinant
FAHP Fuzzy Analytical Hierarchy Process
Fα-DM MCDM Fuzzy α-Discounting Method for

Multi-Criteria Decision Making
(l) matrix for lower boundary fuzzy

values
ls left normalized value/score
(m) matrix for most likely fuzzy values
MCDM Multi-Criteria Decision Making
RCFCS Revised Converting Fuzzy Data into

Crisp Scores Method
rs right normalized value/score
SD strongly inconsistent linear decision-

making problems
TFN triangular fuzzy number
(u) matrix for upper boundary fuzzy

values
WD weakly inconsistent linear decision-

making problems
α-D MCDM α-Discounting Method for Multi-

Criteria Decision Making
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Note
1. Secondary variables are used to indicate the values of the

main variables in a decision-making problem with linear
preference statements. Assume that in a linear decision-
making problem with three criteria – x, y, and z – the
degrees of importance assigned to criteria x and y, as main
variables, can be indicated through z, a secondary variable,
based on the transitivity rule. An example from Smaran-
dache (2010) shows this as follows: Suppose that C1 (x) is
four times as important as C2 (y); C2 (y) is three times as
important as C3 (z); and C3 (z) is one-twelfth as important
as C1 (x). The linear homogeneous system associated to this
decision-making problem is: x = 4y; y = 3z; z = x/12. Using
z as secondary variable, the weights to be assigned to main
variables – x and y – can be obtained easily. Solving this
homogeneous linear system, we get its general solution that
we set as a vector [12z 3z z], where z can be any real num-
ber (z is considered a secondary variable, while x = 12z and
y = 3z are main variables).
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