Serendipitous Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron

1.0) Abstract

Science has many examples of serendipitous discoveries. I think the mathematical equation below is one of those serendipitous accidents accompanied by an observant mind. The following equation shows a mathematical relations that may relate to the mass ratio of the Proton/Neutron.

2.0) Proton/Neutron Mass Ratio

Equation 2.0

\[P(1-P) = \sqrt{3/2} \int_{0}^{1} x^4 (1-x)^4 \, dx \]

Where \(P_x \approx 0.998623461644084 \) and \(P_y \approx 0.00137653835591585 \)

We can see that if we combine \(P_x \), from Equation 2, the Lorentz factor with dimensional constants.

One could take the value of \(P_y = 0.00137653835591585 \) and create a Lorentz transformation of .

Equation 2.1

\[\alpha = \frac{1}{\sqrt{1-(\frac{M_e}{3M_n})^2}} = 1.00000001645 \]

Multiplying \(P_x = 0.99862346144084 \) by the Lorentz factor 1.00000001645

Equation 2.2

\[\frac{M_p}{M_n} = P_x^* \alpha = 0.99862346144084 * 1.00000001645 = 0.998623478023 \]

\[\frac{M_p}{M_n} = 0.998623478023 \]

One can notice that the first \(P_x^* \alpha = 0.998623478023 \) is very close, within one sigma, to the Codata Value of the ratio of the mass of the proton to the mass of the neutron. Within 0.99999999763. It appears that part of the mass that we experience as the rest mass of the proton, is contributed by the rest mass of the electron. It also means that the part that forms the electron and proton and neutron, are not really at rest, since the value \(\frac{M_e}{3M_n} \) is actually a velocity against the constant motion of the aether. We see the value of \(\frac{M_e}{3M_n} \) is exactly the same and shown in
Serendiptious Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron

“The Aether Found, Discrete Calculations of Charge and Gravity with Planck Spinning Spheres and Kaluza Spinning Spheres” (5) The same identity is dividing the mass ratio of the electron to the neutron by 3.

<table>
<thead>
<tr>
<th>proton-neutron mass ratio</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.998 623 478 26</td>
</tr>
<tr>
<td>Standard uncertainty</td>
<td>0.000 000 000 45</td>
</tr>
<tr>
<td>Relative standard uncertainty</td>
<td>4.5 x 10^{-10}</td>
</tr>
<tr>
<td>Concise form</td>
<td>0.998 623 478 26(45)</td>
</tr>
</tbody>
</table>

What is the evidence that this is possible? Is there a relationship between the mass of the electron, proton and neutron that is mathematical and geometric.

1) One sees a value of $\sqrt{3}$. This value could be an angle in cuboctahedron packing of spheres. It could also be an approximation of the sum of 3 nearly equal scalar vectors.

2) One sees a value of 2. This could be $\sqrt{2}$ squared. This value could be an angle in cuboctahedron packing of spheres. It could also be an approximation of the sum of 2 nearly equal scalar vectors.

3) One looks at the part of the equation of $\int_{0}^{1} x^4 (1-x)^4 dx$. Has this structure been used before in physics? Yes it has. Fermi’s coupling constant “$I(X)$” is very similar to the above equation $\int_{0}^{1} x^4 (1-x)^4 dx$ except that Fermi’s coupling constant for muon decay is closer to $\int_{0}^{1} x^2 (1-x)^2 dx$. When one looks at the value $I(x)$

The muon decay width is, from Fermi’s golden rule:

$$\Gamma = \frac{G_F^2 m_{\mu}^5 I \left(\frac{m_e^2}{m_{\mu}^2} \right)}{192\pi^3},$$

where $I(x) = 1 - 8x - 12x^2 \ln x + 8x^3 - x^4$ and G_F is the Fermi coupling constant and $x = \frac{2E_e/m_{\mu}c^2}$ is the fraction of the maximum energy transmitted to the electron. (2)

How Fermi derived this is a mystery to me, but it shows a similarity that should not be overlooked. Is his equation empirical or derived. I am under the impression that much of what is done is empirical, but based off of observed data.
Serendiptious Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron

4.) The value of $P(P-1)$ is similar to “How can the Particles and Universe be Modeled as a Hollow Sphere” (3) Where it is shown that the amount of discontinuities formed when packing sphere is the following.

Integrating Equation 2

Equation 2 \(\text{Discontinuitiesbetweenadjacentlayers} = 4 \pi x^2 - 4 \pi (x-1)^2 \) from 1 to \(x\)

Equation 2a \(Sd = \int_1^x 4 \pi x^2 - 4 \pi (x-1)^2 - dx \).

Therefore

Equation 2b \(Sd = 4 \pi (x^2 - x) = 4 \pi x(x-1) \)

5.) In string theory one speaks of hidden dimensions. Some times 25 dimensions some times 10 dimensions, sometimes 11 dimension. If one studies “Cuboctahedron Sphere Theory of the Universe Shows the Aether to be Composed of Smaller and Smaller Hidden Dimensions of Spheres Until Reaching the Perfect Packing of a Cuboctahedron Packed Spheres” (4) One sees 8 layers of extra 3 perpendicular dimensions each. The calculation down to the final dimension uses the equation derived in “How can the Particles and Universe be Modeled as a Hollow Sphere” (3)

Integrating Equation 1

Equation 1 \(\text{Discontinuitiesbetweenadjacentlayers} = 4 \pi (x+1)^2 - 4 \pi x^2 \) from 0 to \(x\)

Equation 1a \(Sd = \int_0^x 4 \pi (x+1)^2 - 4 \pi x^2 dx \).

Therefore

Equation 1b \(Sd = 4 \pi (x^2 + x) \)

Section 2 (Proton-Electron)/Neutron Mass Ratio
Serendiptious Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron

1) Why is the ratio of the proton divided by the neutron mass important? It is important since has been found in other examples to be important. In “The Aether Found, Discrete Calculations of Charge and Gravity with Planck Spinning Spheres and Kaluza Spinning Spheres” (5) In the calculation of the Force of Charge $q^2 = T \pi^3 \hbar c e(Me) / 2Mn$ where $T^2 = (\frac{(M_p - Me)^2 + Mn^2 + Mn^2}{Mn^2})$ which uses the value described above of the mass of the proton minus the mass of the electron all over the mass of the neutron.

2) Why is the ratio of the proton mass minus the electron mass divided by the neutron mass important? It is important since has been found in other examples to be important. In “Cuboctahedron Sphere Theory of the Universe shows the Aether to be composed of smaller and smaller hidden dimensions of Spheres until reaching the perfect packing of a Cuboctahedron Packed Spheres” (6) Note that both values of “y” calculated for mass ratio of the proton and neutron are used in the calculation of the mass ratio of the electron and neutron.

4) One sees a value of $\sqrt{3}$. This value could be an angle in cuboctahedron packing of spheres. It could also be an approximation of the sum of 3 nearly equal scalar vectors.

5) One sees a value of 2. This could be $\sqrt{2}$ squared. This value could be an angle in cuboctahedron packing of spheres. It could also be an approximation of the sum of 2 nearly equal scalar vectors.

6) One looks at the part of the equation of $\int_0^1 x^4 (1-x)^4 dx$. Has this structure been used before in physics? Yes it has. Fermi’s coupling constant “I(X)” is very similar to the above equation $\int_0^1 x^4 (1-x)^4 dx$ except that Fermi’s coupling constant for muon decay is $\int_0^1 x^2 (1-x)^2 dx$

The muon decay width is, from Fermi’s golden rule:

$$\Gamma = \frac{G_F^2 m_\mu^5}{192 \pi^3} I \left(\frac{m_e^2}{m_\mu^2} \right)$$

where $I(x) = 1 - 8x - 12x^2 \ln x + 8x^3 - x^4$ and G_F is the Fermi coupling constant and $x = \frac{2E_e/m_\mu c^2}$ is the fraction of the maximum energy transmitted to the electron. (2)

How Fermi derived this is a mystery to me, but it shows a similarity that should not be overlooked. Is his equation empirical or derived. I am under the impression that much of what is done is empirical, but based off of observed data.
Serendiptious Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron

4.) The value of P(1-P) could come from “How can the Particles and Universe be Modeled as a Hollow Sphere” (3) Where it is shown that the amount of discontinuities formed when packing sphere is the following.

Integrating Equation 2

Equation 2 \(\text{Discontinuities between adjacent layers} = 4\pi x^2 - 4\pi (x-1)^2 \) from 1 to x

Equation 2a \(Sd = \int_{1}^{x} 4\pi x^2 - 4\pi (x-1)^2 - dx \).

Therefore
Equation 2b \(Sd = 4\pi (x^2 - x) = 4\pi x(x-1) \)

5.) In string theory one speaks of hidden dimensions. Some times 25 dimensions some times 10 dimensions. If one studies “Cuboctahedron Sphere Theory of the Universe Shows the Aether to be Composed of Smaller and Smaller Hidden Dimensions of Spheres Until Reaching the Perfect Packing of a Cuboctahedron Packed Spheres” (4) One sees 8 layers of extra 3 perpendicular dimensions each. The calculation down to the final dimension uses the equation derived in “How can the Particles and Universe be Modeled as a Hollow Sphere” (3)

Integrating Equation 1

Equation 1 \(\text{Discontinuities between adjacent layers} = 4\pi (x+1)^2 - 4\pi x^2 \) from 0 to x

Equation 1a \(Sd = \int_{0}^{x} 4\pi (x+1)^2 - 4\pi x^2 dx \).

Therefore
Equation 1b \(Sd = 4\pi (x^2 + x) \)

Section 2 (Proton-Electron)/Neutron Mass Ratio and Electron/Neutron Mass Ratio

References
1 http://physics.nist.gov/cgi-bin/cuu/Value?mpsmn
2 http://en.wikipedia.org/wiki/Muon
6 http://physics.nist.gov/cgi-bin/cuu/Value?mesmn
Serendiptious Mathematical Geometric Origin of Mass Ratio of the Proton to the Neutron