Three conjectures in Euclidean geometry

Dao Thanh Oai

July 30, 2015

Abstract

In this note, I introduce three conjectures of generalization of the Lester circle theorem, the Parry circle theorem, the Zeeman-Gossard perspector theorem respectively

\section*{1 A conjecture of generalization of the Lester circle theorem}

Theorem 1 (Lester). Let $A B C$ be a triangle, then the two Fermat points, the nine-point center, and the circumcenter lie on the same circle .

Conjecture 2 ([1], [2], [3]). Let P be a point on the Neuberg cubic. Let P_{A} be the reflection of P in line $B C$, and define P_{B} and P_{C} cyclically. It is known that the lines $A P_{A}, B P_{B}, C P_{C}$ concur. Let $Q(P)$ be the point of concurrence. Then two Fermat points, $P, Q(P)$ lie on a circle.

Figure 1: Conjecture 2
When $P=X(3)$, it is well-know that $Q(P)=Q(X(3))=X(5)$, the conjucture becomes Lester theorem.

2 A conjecture of generalization of the Parry circle theorem

Theorem 3 (Parry). Let $A B C$ be a triangle, then the triangle centroid, the first and the second isodynamic points, the far-out point, the focus of the Kiepert parabola, the Parry point and two points in Kimberling centers $X(352)$ and $X(353)$ lie on a circle.

Conjecture 4 ([4], [5]). Let a rectangular circumhyperbola of $A B C$, let L be the isogonal conjugate line of the hyperbola. The tangent line to the hyperbola at $X(4)$ meets L at point K. The line through K and center of the hyperbola meets the hyperbola at F_{+}, F_{-}. Let I_{+}, I_{-}, G be the isogonal conjugate of F_{+}, F_{-}and K respectively. Let F be the inverse point of G with respect to the circumcircle of $A B C$. Then five points I_{+}, I_{-}, G, $X(110), F$ lie on a circle. Furthermore K lie on the Jerabek hyperbola.

Figure 2: Conjecture 4
When the hyperbolar is the Kiepert hyperbola the conjecture be comes Parry circle theorem.

3 A conjecture of generalization of the ZeemanGossard perspector theorem and related

Theorem 5 ([6]). Let ABC be a triangle, the three Euler lines of the triangles formed by the Euler line and the sides, taken by twos, of a given triangle, form a triangle perspective with the given triangle and having the same Euler line.

Conjecture 6 ([7], [8]). Let $A B C$ be a triangle, Let P_{1}, P_{2} be two points on the plane, the line $P_{1} P_{2}$ meets $B C, C A, A B$ at A_{0}, B_{0}, C_{0} respectively. Let A_{1} be a point on the plane such that $B_{0} A_{1}$ parallel to $C P_{1}, C_{0} A_{1}$ parallel to $B P_{1}$. Define B_{1}, C_{1} cyclically. Let A_{2} be a point on the plane such that $B_{0} A_{2}$ parallel to $C P_{2}, C_{0} A_{2}$ parallel to $B P_{2}$. Define B_{2}, C_{2} cyclically. The triangle formed by three lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ homothety and congruent to $A B C$, the homothetic center lie on $P_{1} P_{2}$.

Conjecture 7 ([7], [8]). Notation in conjecture 6, then the Newton lines of four quadrilaterals bounded by four lines $A B, A C, A_{1} A_{2}, L$; four lines $B C, B A, B_{1} B_{2}, L$; four lines $C A, C B, C_{1} C_{2}, L$; and four lines $A B, B C, C A, L$ pass through the homothetic center.

Figure 3: Conjectures 6 and 7

References

[1] http://faculty.evansville.edu/ck6/encyclopedia/ETCPart5.html\#X7668
[2] https://groups.yahoo.com/neo/groups/AdvancedPlaneGeometry/conversations/topics/2546
[3] http://tube.geogebra.org/m/1276919
[4] https://groups.yahoo.com/neo/groups/AdvancedPlaneGeometry/conversations/messages/2255
[5] http://tube.geogebra.org/material/show/id/1440565
[6] http://faculty.evansville.edu/ck6/tcenters/recent/gosspersp.html
[7] https://groups.yahoo.com/neo/groups/AdvancedPlaneGeometry/conversations/messages/2643
[8] http://tube.geogebra.org/m/1430179
Dao Thanh Oai: Cao Mai Doai-Quang Trung-Kien Xuong-Thai Binh-Viet Nam E-mail address: daothanhoai@hotmail.com

