

Letters and Comments

Depicting of electric fields

Radi I. Khrapko

Moscow Aviation Institute - Volokolamskoe shosse 4, 125993 Moscow, Russia Email: <u>khrapko_ri@hotmail.com</u>

Abstract

Examples are presented that geometrical images of generated electromagnetic fields are emitted by the geometrical images of the electromagnetic fields, which are the sources

Keywords: electromagnetism, differential forms

PACS: 03.50.De

1. Problem

It is obviously that a charge density ρ is the *source* of the irrotational electric vector field **D**, that ρ *generates* the field **D** according to the formula

$$\int \rho(x') \frac{\mathbf{r}(x,x')}{4\pi r^3(x,x')} dV' = \mathbf{D}(x)$$
(1)

(here x denotes x, y, z). The field **D** is depicted by the field lines: the lines are always tangent to the field vectors **D**. If the density of the field lines is proportional to the magnitude of the vector **D**, the lines **emerge** from electric charges [1], i.e. from the charge density ρ (see Fig. 1a¹). The charge density ρ emits the field lines of vectors **D**.

At the same time, the derivative of magnetic field, $\dot{\mathbf{B}}$, is the source of the solenoidal electric field \mathbf{E} , and $\dot{\mathbf{B}}$ generates this field according to the formula

$$-\int \dot{\mathbf{B}}(x') \times \frac{\mathbf{r}(x,x')}{4\pi r^3(x,x')} dV' = \mathbf{E}(x).$$
⁽²⁾

But the field lines of the solenoidal field **do not emerge** from the derivative $\dot{\mathbf{B}}$. Instead, the lines are closed around the derivative, $\dot{\mathbf{B}}$, (see Fig. 1b²). The derivative, $\dot{\mathbf{B}}$, does not emit the field lines of the solenoidal field.

Why? What is the cause of the difference between generating of irrotational and solenoidal fields?

¹ Figure 2.5 from [2] is used here, but its sense is modified

² This figure is from [3]

Fig.1 Generations of electromagnetic fields.

(a) Field lines of vectors D emerge from the charge density ρ , which is a source of vector field D.

(b) The derivative, \dot{B} , is a source of the solenoidal field E.

(c) Field bisurfaces of covector field **E** emerge from the field tubes of the vector density $-\mathbf{B}$.

2. Solution

The point is the field \mathbf{E} in (2) is not a vector field. $\dot{\mathbf{B}}$ generates a *covector* field. \mathbf{E} is a covector field. And covector fields are depicted not by field lines. Covector fields are depicted by bisurfaces. In the case of (2), field bisurfaces **emerge** from the field tubes, which represent the derivative of magnetic field, $\dot{\mathbf{B}}$, as is shown in Fig. 1c³.

3. Geometrical quantities

It is important to recognize that the electromagnetism involves geometrical quantities of two different types [5]. These are: covariant (antisymmetric) tensors, e.g. $\mathbf{E} = E_{\beta}$, $\mathbf{B} = B_{\gamma\beta}$, which are named exterior differential forms or simply forms, and contravariant (antisymmetric) tensor *densities*, e.g. ρ , $\mathbf{D} = D^{\alpha}$, $\mathbf{H} = H^{\alpha\beta}$ (see Fig. 2⁴)

Fig. 2. Covector $\mathbf{E} = \mathbf{F}$ is represented by two parallel plane elements equipped with an outer orientation. Vector density \mathbf{D} is represented by a cylinder with an inner orientation. Covariant bivector \mathbf{B} is represented by a cylinder with an outer orientation.

Physicists and mathematics often use gotic fonts while writing densities. E.g. Schouten uses \mathfrak{D} instead of **D** and **H**. We do not use a gothic font.

So, according to Fig. 1c, the field tubes of the covariant bivector $-\mathbf{B}$ emits field biplanes of covector \mathbf{E} . Their orientations are consistent.

References

- [1] Feynman R P, Leighton R B, Sands M 1965 *The Feynman Lectures on Physics* (Addison–Wesley, London) Vol. 2, p. 4–11.
- [2] Ohanian H C 1988 Classical Electrodinamics (Newton: Allyn and Bacon).
- [3] Ohanian H C 1985 Physics (W. W. Norton, N. Y).
- [4] Khrapko R I 2011 Visible representation of exterior differential forms and pseudo forms. Electromagnetism in terms of sources and generation of fields. Наглядное представление дифференциальных форм и псевдоформ. Электромагнетизм в терминах источников и порождений полей. (Saarbrucken: Lambert).
 - http://khrapkori.wmsite.ru/ftpgetfile.php?id=105&module=files
- [5] Schouten J A 1951 Tensor Analysis for Physicists (Oxford: Clarendon).

³ This figure is from [4], p. 7.

⁴ This is figure 23 from [5].

EJP quality

EJP Board does not know the difference between vector and covector and does not want to know. They rejected the paper **''Depicting of electric fields''** EJP-101291 and ignore author's objection. Please see

Sent: Monday, July 20, 2015 REFEREE REPORT(S):

This paper shows a difference between the electric field E and displacement vector D. Author is right that the two vectors have a different geometrical structure. However he is not right saying that the E vector is a covector. The argument for E being a vector is in fact very simple. Consider a point particle with charge q in electric field. The force F exerted on the particle is F = qE. The force must be a vector, since Newton's equations give a linear relation between the force and acceleration, hence also velocity. These mechanical quantities are vectors for sure. Thus E must be a vector. This argument does not apply to the D field, which in fact is a covector.

Author's argument for E being a covector prove only that either B (magnetic induction) or E is a covector but do not prove that E must be a covector.

In fact there is a deep analogy between mechanical velocity v and vector E, and mechanical momentum p with vector D. In mechanics velocity is a vector and momentum – a covector. In electromagnetism E is a vector and D – a covector. The main result of the paper is erroneous. The paper is not written in a transparent way, it is very hard to follow author's arguments. I do not recommend this letter for publication.

EDITOR-IN-CHIEF COMMENTS:

The paper seems rather confusing (as detailed by **the Board Member**) and in my opinion does not help at all in the understanding or teaching of physics. Therefore I consider it inappropriate for EJP.

Author's objection.

Dear Editors, This Referee Report is unacceptable. See my notes (red) REFEREE REPORT(S):

This paper shows a difference between the electric field E and displacement vector D. No, the difference between the electric field E and displacement vector (density) **D** is well known and is not worth writing a paper. This paper shows that geometrical image o **D**, i.e. tubes with an inner orientation, emerge from the charge density ρ , which is the *source* of the field **D**. And the paper shows that geometrical image of E, i.e. bisurfaces with an outer orientation, emerge from the field tubes of the vector density $-\partial_{\tau} \mathbf{B}$, which are the *source* of the solenoidal electric field **E**

Author is right that the two vectors have a different geometrical structure. However he is not right saying that the E vector is a covector.

No, here the Referee is trivial mistaken. **E** is a covector, according to $-\partial_t \mathbf{B} = \operatorname{curl} \mathbf{E}$, because curl is applied only to covectors: $-\partial_t B_{ik} = \partial_i E_k - \partial_k E_i$.

Besides, **E** is a covector, according to $\mathbf{E} = -\operatorname{grad} \boldsymbol{\varphi}$, because grad is a covector: $E_i = -\partial_i \boldsymbol{\varphi}$.

The argument for E being a vector is in fact very simple. Consider a point particle with charge q in electric field. The force F exerted on the particle is F = qE. The force must be a vector, since Newton's equations give a linear relation between the force and acceleration, hence also velocity. These mechanical quantities are vectors for sure. Thus E must be a vector.

If Referee wants **E** as a vector, he must use the metric tensor: $E^{i} = g^{ik}E_{k}$, but a force considered as

F = -grad U is a covector.

This argument does not apply to the D field, which in fact is a covector.

This is a trivial delusion. According to $\rho = \operatorname{div} \mathbf{D}$, **D** is a vector density because div does not apply to a covector, div applies to a vector density: $\rho = \partial_i D^i$.

Author's argument for E being a covector prove only that either B (magnetic induction) or E is a covector but do not prove that E must be a covector.

B is a covariant bivector B_{ik} , or, after dualization, is a pseudo vector: $B^{j} = B_{ik} \varepsilon^{ikj}$

In fact there is a deep analogy between mechanical velocity v and vector E, and mechanical momentum p with vector D. In mechanics velocity is a vector and momentum – a covector. This is a monstrous muddle! The Referee forgot $\mathbf{p} = \mathbf{mv}$.

In electromagnetism E is a vector and D - a covector. The main result of the paper is erroneous. The main result of the referee comments is the Referee's incompetence

The paper is not written in a transparent way, it is very hard to follow author's arguments.

This opinion confirms the Referee's incompetence

I do not recommend this letter for publication.

I recommend to change this Referee.