Disproof the four counterexamples for Beal's conjecture

Valdir Monteiro dos Santos Godoi
valdir.msgodoi@gmail.com

In Bulletin of Mathematical Sciences \& Applications, probably by mistake, was published a paper which intended give some counterexamples of the Beal's conjecture ${ }^{[1]}$.

The four examples in that paper are wrong, very wrong.

The definition of Beal's conjecture is
"If $A^{x}+B^{y}=C^{z}$ when $A, B, C, x, y, z \in \mathbb{Z}_{+}$and $x, y, z>2$ then A, B, C have a common prime factor."

The four counterexamples are following:

1) $2^{88}+9999999999999^{3}=10^{39}$

The equality is false. The left side is odd and the right side is even. It's impossible.
2) $2^{233}+99999999999999^{6}=10^{84}$

The same mistake. Odd number is not equal to even number.
3) $2^{205}+999999999999999^{5}=10^{75}$

There is error again. Odd number is not equal to even number. The equality is false.
4) $20000000000000^{3}+15000000000000^{3}=22489707226377^{3}$

Now in the last example the left side is an even number and the right side is an odd number. It's impossible again. And more: the Fermat's Last Theorem is true!

Therefore the four Saravanan's counterexamples for Beal's conjecture are wrong.
If you use a few digits calculator then you might think (wrongly) that these equalities are true, but this will occur because many significant digits are discarded in a limited precision calculator. In Number Theory, unlike approximate numerical calculation, these four counterexamples are clearly falses.

REFERENCES:

1. Saravanan, S. Beal's Conjecture - CounterExamples, Bulletin of Mathematical Sciences \& Applications, 4 (2), pp.01-02 (2015).
