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Geometric algebra is a powerful mathematical tool for description of physical 

phenomena. The article [3] gives a thorough analysis of functions of multivectors in Cl3 

relaying on involutions, especially Clifford conjugation and complex structure of algebra. 

Here is discussed another elegant way to do that, relaying on complex structure and 

idempotents of algebra. Implementation of Cl3 using ordinary complex algebra is briefly 

discussed. 
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1. Numbers 

 

Geometric algebra is a promising platform for mathematical analysis of physical 

phenomena. The simplicity and naturalness of the initial assumptions and the possibility of 

formulation of (all?) main physical theories with the same mathematical language imposes the 

need for a serious study of this beautiful mathematical structure. Many authors have made 

significant contributions and there is some surprising conclusions. Important one is certainly 

the possibility of natural defining Minkowski metrics within Euclidean 3D space without 

introduction of negative signature, that is, without defining time as the fourth dimension ([1, 

6]).  

 

In Euclidean 3D space we define orthogonal unit vectors
1 2 3
, , e e e  with the property 

2
1

i
=e , 0

i j j i
+ =e e e e , 

 

so one could recognize the rule for multiplication of Pauli matrices. Non-commutative 

product of two vectors is = ⋅ + ∧ab a b a b , sum of symmetric (inner product) and anti-

symmetric part (wedge product). Each element of the algebra (Cl3) can be expressed as linear 

combination of elements of 23 – dimensional basis (Clifford basis) 

{ }1 2 3 1 2 3 1 2 3 1 2 3
1,  ,  ,  ,  ,  ,  ,  e e e e e e e e e e e e , 

 

where we have a scalar, three vectors, three bivectors and pseudoscalar. According to the 

number of unit vectors in the product we are talking about odd or even elements. If we define 

1 2 3
j = e e e  it is easy to show that pseudoscalar j has two interesting properties in Cl3: 1) 

2
1j = − , 2) jX Xj= , for any elementX  of algebra, and behaves like an ordinary imaginary 

unit, which enables as to study a rich complex structure of Cl3. This property we have for n = 

3, 7, … [3]. Bivectors can be expressed as product of unit pseudoscalar and vectors, v

�

j . 
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We define a general element of the algebra (multivector) 
 

,      ,      x n F F x n= + + + = + = + = +
� � � �

M t j jb z z t jb j  
 

where z is a complex scalar and an element of center of algebra, whileF , by analogy, is a 

complex vector. Complex conjugation ( j∈ℂ ) is
†

 ,

∗

= = −z z t jb
†

F F x n
∗

= = −

� �

j , where 

dagger means reversion, to be defined later in the text. The complex structure allows a 

different ways of expressing multivectors, one is 

( )x n n x= + + + = + + −
� � � �

M t j jb t j j b j , 
 

where multivector of the form v̂+a vj  belongs to the even part of the algebra and can be 

associated with rotations, spinors or quaternions. Also we could treat multivector as ([12])
3

0

1

,     

i i k

i

M α α α

=

= + ∈∑ e ℂ  and implement it relying on ordinary complex numbers. 

 

Main involutions in Clifford algebra are: 

1) grade involution: M̂ t j jb= − + −
� �

x n  

2) reverse (adjoint):  
†

M t j jb z
∗ ∗

= + − − = +

� �

x n F  

3) Clifford conjugation:   x n F F= − − + = + = −

� �

M t j jb z z , 
 

where an asterisk stands for a complex conjugate. Grade involution is the transformation 

ˆ
= −x x

� �

   (space inversion), while reverse in Cl3 is like a complex conjugation, 
† †

,   j j= = −x x

� �

. Clifford conjugation is combination of two involutions
†ˆ ,   ,    M M j j= = − =x x

� �

. Bivectors given as a wedge product could be expressed as 

j∧ = ×x y x y
� � � �

, where ×x y
� �

 is a cross product. An application of involutions is easy now. 

Defining paravector p t= + x

�

 we have ( ) ( )
2 2 2

pp t t t t x= + = + − = −x x x

� � �

 and we 

have a usual metric of special relativity.  

From ˆM M M t j= ⇒ = +
�

n , the even part of the algebra (spinors). 

From 
†

M M M t= ⇒ = +
�

x , paravector; reverse is an anti-automorphism ( )
†

† †
=MM MM , 

so †
MM  (square of multivector magnitude, [2]) is a paravector. 

From M M M t jb z= ⇒ = + = , a complex scalar. Clifford conjugation is anti-automorphism, 

=MM MM , soMM  (square of multivector amplitude, [2]) is a complex scalar and there is 

no other “amplitude” with such a property ([1]). 
 

We define a multivector amplitude M  (hereinafter MA) 
 

( )
2 2 2 2 2

2 ,   MM M t x n b j tb M= = − + − + − ⋅ ∈x n

� �
ℂ

 
 

which we could express as  
 

( )( ) 2 2 2 2 2
,    2MM M z z z x n j= = + − = − = − + ⋅ ∈F F F F x n

� �
ℂ . 

 

For 
2 2

 0,  or  0= = =F F N  fallows M z=  (
2 2 2

 ,  0x n= − ⋅ =N x n
� �

 is a nilpotent in the 

algebra). For 
2

c= ∈F ℝ  (  0⋅ =x n

� �

, whirl [1]) here is used a designation ( )c
F . From 2

∈F ℂ  

(3) 



3 

 

we have ( ) ( )
2 2

1 1
/ ,   1= =F F F F , and 

( )
2 2

1

ˆ ˆ/ / ,   1j= − = = − = −F F F F F F F  (complex 

unit vector). With ( )1
=f F we also define ( ) 2

1 / 2,   ,   0u u u u u
± ± ± + −
= ± = =f , idempotents 

of the algebra ([1, 9]). Every idempotent in Cl3 can be expressed as 
2

, 0u p
± ± ± ±
= + =N N , 

where p
±
 are simple idempotents, like ( )11 / 2.p

±
= ± e  For example, 

( )1 2 3
1 / 2,u j

+
= + + +e e e

2 3
j= +N e e  (figure below).

 
 

2. Implementation 
 

From 
3

0 0

1

,     

i i k

i

M Aα α α α

=

= + = + ∈∑ e ℂ , it is 

easy to implement the algebra on computer using 

ordinary complex numbers only. In [15] are 

defined products: 
 

3

1

i i

i

A B α β
=

=∑� (generalized inner product), 

[ ]det ,  ,  
i i i

A B α β⊗ = e , (generalized outer 

product), and  

 

AB A B A B= + ⊗�   (generalized geometric 
product). 
 

 

 

Now we have ( )( )A B A B B A
A B A B ABα α α α α α+ + = + + + . We can find 

i
α  for multivector

M t j jb= + + +x n

� �

 using linear independency.  

. 

3. Spectral decomposition 
 

 

Starting from multivector  

 

2 2
,   0M z z x y= + = + = + ≠F F f f F  

 

we see the form of unipodal-like numbers. Defining 

M x y
±
= ±  and recalling a relation (easy to proof)

u u
± ±
= ±f  follows  

( ) ( )Mu x y u x y u M u
± ± ± ± ±
= ± = ± =f ,  

 

so we have a projection. Spectral basis u
±

 is very useful because the binomial expansion of a 

multivector is very simple 
 

( )
22 2 2

,   

n n n

M M u M u M u M u M M u M u n
+ + − − + + − − + + − −

= + = + ⇒ = + ∈ℤ , 
 

where  n <  0 is possible for 0M ≠  ( ( )1
/M M MM

−

= ).  

2

(1) 1=F

"whirl"
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Defining conjugation ( )a b a b
−

+ = −f f  (obviously the Clifford conjugation) we have 

( ) ( ) 2 2
a b a b a b

−

+ + = −f f , where 2 2
a b MM MM

−

− = = is a multivector amplitude. In 

spectral basis using u u
−

±
=

∓
we have ( ) ( )MM M u M u M u M u M M

−

+ + − − + − − + + −
= + + = . 

 

Starting fromM z= + F  we have 

( )2 2 2
cosh sinh ,    

x y
M z x y x yρ ρ ϕ ϕ ρ

ρ ρ

 
= + = + = + = + = − 

 
F f f f f , 

obtaining the polar form of a multivector. If a multivector amplitude is zero we have light-like 

multivector and there is no a polar form. Now defining tanhϕ ϑ=  (“velocity”) we have  
 

( ) ( ) 1 2
cosh sinh 1 ,   1M ρ ϕ ϕ ργ ϑ γ ϑ−

= + = + = −f f  
 

and in the spectral basis 
 

( ) ( ) 1
1 1M k u k u k Kργ ϑ ργ ϑ ρ ±

+ + − − ±
= + = + ⇒ = ± =f , 

 

where ( ) ( )1 / 1K ϑ ϑ= + −  is a generalized Bondi factor ( log Kϕ = ). Now we have  

( )( )1 1 1 1 1

1 1 1 1 1 2 1 2 1 2
K u K u K u K u K K u K K u Ku K u K K K

− − − − −

+ − + − + − + −
+ + = + = + ⇒ = , 

or 

( )( ) ( )( )

( ) ( ) ( )( )

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 1

1 1 / 1

γ γ ϑ ϑ γ γ ϑ ϑ ϑ ϑ

γ γ ϑ ϑ ϑ ϑ ϑ ϑ

+ + = + + + =

+ + + + ⇒

f f f

f  

( ) ( ) ( )1 2 1 2 1 2 1 2
1 ,   / 1 ,γ γ γ ϑ ϑ ϑ ϑ ϑ ϑ ϑ= + = + +

 
 

and we have “velocity addition rule”. So, every multivector could be mathematically treated 

like an ordinary boost in special relativity. For 1ρ =  we have a “boost” 

( ) 1
1 Ku K uγ ϑ −

+ −
+ = +f  as transformation that preserves multivector amplitude and should 

be considered as a part of the Lorentz group ([1, 2]). As a simple example of a unit complex 

vector we already mentioned 
1 2 3 1 2 1 2

j= + + = + +f e e e e e e e , completely in Cl2, suggesting 

that one could analyze problem in basis ( )(1)1,  F or related spectral basis in 
1 2
e e  plane and 

rotate all elements to obtain relations for an arbitrary orientation of a plane, using powerful 

apparatus of geometric algebra for rotations. 
 

Mapping basis (1, f ) to ( ,  )e e
φ φf f

f we obtain new orthogonal basis and new 

components of multivector  
 

( ) ,

,   ,   .

a b a e b e a b e

a ae b be a b a b

φ φ φ

φ φ− −

′ ′ ′ ′+ → + = +

′ ′ ′ ′= = + = +

f f f

f f

f f f

f f  

 

4. Functions of multivectors 

 

Using series expansion it is straight forward to find a closed formulae for (analytic at 

least)  functions. If 2
0=F  we have ( ) ( )f M f z=  and it is easy to find closed form using 

theory of functions on the complex field. Otherwise, from the series expansion 
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( ) ( )
( ) ( )0

0
!

n n

n

f x
f x f

n
= +∑  

using 2 n n

M M u M u
+ + − −

= +  we have 
 

( ) ( ) ( )f M f M u f M u
+ + − −

= +  
 

and, again, it is “easy” to find a closed form because ofM
±
∈ℂ . For 2

M = =F F f we 

have ( ) ( ) ( )2 2 2
M f M f u f u

± + −
= ± ⇒ = + −F F F . If function is even we have 

( ) ( )( ) ( )2 2
f f u u f

+ −
= + =F F F  and similarly for odd functions 

( ) ( )( ) ( )2 2
f f u u f

+ −
= − =F F F f . For 2 2

,   0M z= + = =F F N  there is no spectral 

decomposition ( f  is not defined), but we have ( ) 1n
n n n

M z z nz
−

= + = +N N , giving 

( ) ( ) ( )f z f z f z′+ = +N N . We also have a special cases 

    ( ) ( )1f u f u
± ±

= ± , 

( ) ( ) ( ) ( )1 1f f u u f u f u
+ − + −

= − = + −f , 

    ( ) ( ) ( ) ( )ˆf f ju ju f j u f j u
+ − + −

= − + = − +F . 

 

Obviously, for an odd function we have  ( ) ( ) ( ) ( )ˆ1 ,   f f f f j= = −f f F f  and for even 

functions ( ) ( ) ( ) ( )ˆ1 ,   f f f f j= =f F f . 

 

For an inverse function we have  
 

( ) ( ) ( ) ( )1 1f y x f x y f x y x f y− −

± ± ± ±
= ⇒ = ⇒ = ⇒ = . 

 

For a light-like multivectors ( 0MM = ) we have  
 

( )( )2 2
=z+z ,  z - 0 z-z z+zM z= + = =

F F F
F f f F , 

 

and two possibilities: 
 

1)  ( ) ( )2 ,   0 2z z M z M f M f z u
+ − +

= ⇒ = = ⇒ =
F F F

 

2)  ( ) ( )0,   2 2z z M M z f M f z u
+ − −

= − ⇒ = = − ⇒ = −
F F F

 
 

Once a spectral decomposition of a function is analyzed there remains just to use the 

well known properties of functions of a complex variables.  

 

5. Examples 
 

Here we (again) define 2
M z z z z= + = + = +

F
F F f f and 

,   M z z M z z
+ −
= + = −

F F
. 

 

For the inverse of M  we have ( 0M ≠ ) 
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( )( )
1 1 M u M u M u M u u u

M
M u M u M u M u M u M u M M M M

− + − − + + − − + + −

+ + − − + + − − + − − + + − + −

+ +

= = = = +

+ + +

, 

 

as expected. Now it is obvious that  
 

( ) ( ) ( )

1
n

n n n

u u
M

M u M u M M

− + −

+ + − − + −

= = +

+

. 

 

We can find square root using 
 

( ) ( )
2 2

M S S u S u M M u M u S u S u S M
+ + − − + + − − + + − − ± ±

= = + ⇒ = + = + ⇒ = ± . 

 So, generally we have ( )
1/1/

,   

n
n

M S S M n
±±

± ±
= ⇒ = ∈ℕ .  As a simple example (an 

interested reader could compare with [3]) ( ) / 2
i i

j j= ± +e e . 
 

The exponential function is easy one, M MM
e e u e u

+ −

+ −
= +  and now we have 

exponentials of complex numbers (just use ordinary 1i = −  and replace i j→  at the end). 

Logarithm is the inverse function to exponential, so we have  
 

( ) ( )log exp exp log
X

M X e M M u M u X u X u X M
+ + − − + + − − ± ±

= ⇒ = = + = + ⇒ = . 

In [3] is derived formula ˆlog logM M ϕ= + F , ( )arctan / zϕ = F , but those are equivalent: 
 

2 ˆ,   z j j= = − = − ⇒
F

F F F f  

( ) ( )
( ) ( ) ( ) ( )log log log log

log log
2 2

M M M M
M u M u

+ − + −

+ + − −

+ −

+ = + =f

( ) ( )( ) ( )ˆ ˆ ˆlog log 1 / / 1 / log arctan / log .M j j z j z M z M ϕ   − − + = + = +   F F F F F F  

 

Now we can find, for a∈ℝ , loglog loga a M
M X X a M X e= ⇒ = ⇒ = , 

 

but the same appears to be correct for a z= + F  and one can find, for example,  
 

loglog log M
M X X M X e= ⇒ = ⇒ =

v v

v

� �

�

, 
 

although  here some caution is needed because of possibility ( )log logX M= ⇒v

�

( )logM
X e=

v

�

. Also, relation logM
M e= is generally not valid and needs some care due to the 

multivalued nature of the logarithm operation. Nevertheless, expressions like 

( ) ( )exp log exp / 2j j j jπ= = =
1
e

1 1 1
e e e , or ( ) 3

2
j=

e

1
e e

 
are quite possible in Cl3. Simple 

examples ( ( )1 / 2u
±
= ±

1
e ): 

 

1.  log logX X= ⇒ =
1
e

1 1 1
e e e , 

 ( )log log1 log 1u u u u j uπ
+ − + − −

= − ⇒ = + − = ⇒
1 1
e e  

( ) ( )log exp expj u X j u j u uπ π π
− − − −

= − ⇒ = − = − = −
1 1
e e  

(solution e1 is not valid because of log logj uπ
−

= − = −
1 1 1
e e e ). 

2. 2

2 2
log logX X j uπ

−

= ⇒ = =
e

1 1
e e e e ,  

but 
2 2 2 2

0u u u u
− − + −

= =e e e e , so ( )2 2
exp 1X j u j uπ π

− −

= = +e e , 
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or ( ) 2 2 2
log log 1X j u X j uπ π

− +
= = ⇒ = +

1
e e e e , 

and finally 
2

1X j uπ
±

= + e  and 
2

1 ,   
n

X jn u nπ
±

= + ∈e ℤ  

(solution 1 is not valid because of 
2
log 0≠

1
e e , it is a nilpotent). 

 

Trigonometric and hyperbolic trigonometric functions are straightforward and ctg one 

could obtain as inverse of tan. For example 
 

( ) ( ) ( )( ) ( )2 2 2 2

1
sin sin sin sin sinu u u u

+ − + −
= + − = − =F F F F F F , 

( ) ( ) ( )( ) ( )2 2 2 2
cos cos cos cos cosu u u u

+ − + −
= + − = + =F F F F F . 

For =F N  there is no spectral decomposition, but using exp(zN) = 1+ zN we have 
 

sin ,  cos 1,  sinh ,  cosh 1= = = =N N N N N N . There is no N-1, so ctgN  is not defined. 
 

Series in powers of argument are crucial for all analytic functions (in geometric 

algebra too) and we can use presented spectral decomposition to obtain components of such 

functions in spectral basis. 

 

Conclusion 

 

Geometric algebra of Euclidean 3D space (Cl3) is really rich in structure and gives the 

possibility to analyze functions defined on multivectors, extending thus theory of functions of 

real and complex variables, providing intuitive geometrical interpretation also. From simple 

fact that for a complex vector ( 2
0≠F ) we can write 2 2 2

/ ,   1,   = = ∈F F f f F ℂ  follows 

nice possibility to explore idempotent structure ( )1 /2  u
±
= ± f and spectral decomposition of 

multivectors. Using the orthogonality of the spectral basis vectors (idempotents) u
±

it is 

shown that all multivectors ([1]) can be treated as the unipodal numbers (i.e. hypercomplex 

numbers over a complex field). A definition of functions is then quite simple and natural and 

strongly counts on the theory of functions of complex variable. Complex numbers and vectors 

(bivectors, trivectors) are thus united in one promising system.  

 

Appendix 

 

A1. Bilinear transformations 

 

Regarding that bilinear transformations of multivectors do not change some property 

of multivectors one could ask yourself: what property? In [2] was shown that the multivector 

amplitude, defined using the Clifford conjugation, is the unique involution that is 

commutative (MM MM= ) and belongs to the center of the algebra. From text we see that 

multivector amplitude is defined as M M
+ −

∈ℂ  using just natural conjugation 

a b a b+ → −f f , where f  is our “hypercomplex unit”. But this is just Clifford conjugation 

and we see now new meaning for it: it is just a “hypercomplex conjugation”. This is a strong 

argument for regarding Lorentz transformations to be a group of bilinear transformations that 

preserve multivector amplitude. It is verified on paravectors giving known special relativity, 

but now we should extend it on a whole multivector including in this way all multivector 

symmetries of Euclidean 3D space. For multivector X (transformation) now we have 

1X X
+ −

=  and  
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ˆ ˆ ˆlog log log1M
X e M X X ϕ ϕ ϕ= ⇒ = = + = + = =F F F F ,  

 

giving thus a general bilinear (twelve parameters) transformation j j
M e Me

+ +

′ =
p q r s
� � � �

.  

 

We started from a new definition of a vector multiplication (Clifford or geometric 

product) and we see that 3D Euclidean space has a rich complex and hyper-complex structure. 

The Clifford conjugation is the natural choice to define a multivector amplitude. A bilinear 

transformations that preserve multivector amplitude form a group containing the ordinary 

Lorentz transformations (restricted), but it is really natural to assume that a physical reality 

should be richer. Some consequences of that assumption are discussed in [1] and [2]. 

 

A2. Hyperbolic inner and outer products 
 

Given two multivectors 
1 1 1

M z z= +
F
f  and 

2 2 2
M z z= +

F
f  we define a square of 

multivector distance (conjugate products, [13]) as 
 

( )( ) ( )1 2 1 1 2 2 1 2 1 2 1 2 2 1
M M z z z z z z z z z z z z hi ho

−

= − + = − + − = +
F F F F F F
f f f f , 

 

where hi and ho stands for hyperbolic inner and hyperbolic outer products. If 
1 2

M M M= =  

we have ( )2 2 2 2
M M z z zz zz z z

−

= − + − = −
F F F F

f ,   just square of multivector amplitude. 

This suggests that hi and ho  have to do something about being “parallel” or “orthogonal” 

besides being “near” and “close”. For complex and hypercomplex plane (with real 

coordinates) meaning is obvious (fig A2). 

 

With ho = 0 multivectors are said to be “h-parallel”, while 

for hi = 0 they are “h-orthogonal”. For hi = ho 

= 0 multivector distance is null and we said it 

to be “h-light-like”, where h- stands for 

hyperbolic. 

In “boost” formalism we have 
 

( )1 2 1 2 1 2
1 ,hi ρ ρ γ γ ϑ ϑ= −  

( ) ( )1 2 1 2 2 1 1 2
/ 1 .ho ρ ρ γ γ ϑ ϑ ϑ ϑ= − −  

 

 So, “h-parallel” multivectors have equal  

“velocities” and 
1 2

hi ρ ρ= , while for “h-

orthogonal” multivectors “velocities” are 

reciprocal and ho becomes infinite (orthogonal multivectors belong to different hyper- 

quadrants delimited by light-like hyper-planes).  
 

Lema: Let 
1 2

0M M
−

=  for
1

0M ≠ and
2

0M ≠ .Then 
1 2

0M M ≠ , and vice versa. 
 

( )( )1 2 1 1 2 2 1 2 1 2
,M M M u M u M u M u M M u M M u

+ + − − + + − − + + + − − −
= + + = +

 
( )( )1 2 1 1 2 2 1 2 1 2

M M M u M u M u M u M M u M M u
−

+ − − + + + − − − + + + − −
= + + = + , 

and we have 
1 2 1 2

0  or  0M M M M
− + + −

= = , which means 
1 2

0  and  0M M
− −
= = or 

1 2
0  and  0M M

+ +
= = , but either case gives 

1 2
0M M ≠ . Converse proof is similar. 

 
 
 
 
 
 

h-parallelh-orthogonal

fig A2: Yellow line represents h-numbers parallel  

             or orthogonal to given h-number (red dot). 
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A3. Polynomials 
 

Suppose we have simple equation 2
1 0M + = , then objects that squares to -1 are 

solutions. Using spectral decomposition we could explore it further, so,  
 

( ) ( ) ( )
22 2 2

1 1 1 0M M u M u u u M u M u
+ + − − + − + + − −

+ = + + + = + + + = ⇒  

2 2
1 0,   1 0M M

+ −
+ = + = , so we have two equations over complex numbers. Obvious solutions 

are ˆ1,  ,  ,  
i

j je− F , but it is possible to investigate further. There is an infinite number of 

solutions, obviously, due to algebraically expanded paradigm of number.   
 

Another simple equation is 2 2 2
0M M u M u

+ + − −
= + = . One obvious solution is M = N

(nilpotent) which we cannot obtain using spectral decomposition (because there is no one for  

a multivector N ), so, some caution is necessary. 
 

In physics we are using a lot of special polynomials and their roots and we probably 

should reconsider those in geometric algebra. 
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