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The identity of Johann Bernoulli, nowadays known as "Sophomore's Dream",
states that
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This paper represents the proof of generalized fact that
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for every natural k, and moreover,
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for every appropriate a and c.

Proof:
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Even more,
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You can use the fact (∗) in more general way:
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So, if you have closed-form expressions for every natural n and every real c
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One can use it, for example, to show that
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That's why, for example,
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