Generalized Sophomore's Dream Identity

Danil Krotkov

(July 3, 2015)

The identity of Johann Bernoulli, nowadays known as "Sophomore's Dream", states that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{n}}=\int_{0}^{1} \frac{1}{x^{x}} d x
$$

This paper represents the proof of generalized fact that

$$
\sum_{n=k+1}^{\infty} \frac{n^{k}}{n^{n}}=\int_{0}^{1} \frac{x^{k}}{x^{x}} d x
$$

for every natural k, and moreover,

$$
\begin{equation*}
\left.\sum_{n=1}^{\infty} \frac{a^{n}}{(n+c)^{n}}=\int_{-c}^{a-c} \frac{a^{t}}{(t+c)^{t}} d t \quad=a \int_{0}^{1} t^{c-a t} d t\right) \tag{*}
\end{equation*}
$$

for every appropriate a and c.
Proof:

$$
\sum_{n=1}^{\infty} \frac{a^{n}}{(n+c)^{n}}=\sum_{n=1}^{\infty} a^{n} \int_{0}^{\infty} \frac{t^{n-1}}{(n-1)!} e^{-t(n+c)} d t=a \int_{0}^{\infty} e^{-t(c+1)+a t e^{-t}} d t=a \int_{0}^{1} t^{c-a t} d t .
$$

Even more,

$$
\sum_{n=0}^{\infty} \frac{a^{n}}{n!} \frac{\Gamma(n+b)}{(n+c)^{n+b}}=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} \int_{0}^{\infty} t^{n+b-1} e^{-t(n+c)} d t=\int_{0}^{\infty} t^{b-1} e^{-c t+a t e^{-t}} d t .
$$

You can use the fact $(*)$ in more general way:
$\sum_{n=1}^{\infty} \frac{a^{n}}{(n+c)^{n}} \int_{p}^{q} t^{n-1} f(t) d t=a \int_{p}^{q} f(t) \int_{0}^{1} x^{c-a t x} d x d t=a \int_{0}^{1} x^{c} \int_{p}^{q} f(t) e^{-a t x \ln x} d t d x$.
So, if you have closed-form expressions for every natural n and every real c of integrals $\int_{p}^{q} t^{n-1} f(t) d t$ and $\int_{p}^{q} f(t) e^{-c t} d t$, you have the closed-form integral expression of the sum

$$
\sum_{n=1}^{\infty} \frac{a^{n}}{(n+c)^{n}} \int_{p}^{q} t^{n-1} f(t) d t
$$

One can use it, for example, to show that

$$
\sum_{n=1}^{\infty} \frac{a^{n} \Gamma(n+b)}{(n+c)^{n}}=a \Gamma(1+b) \int_{0}^{\infty} \frac{e^{-x(c-b)}}{\left(e^{x}-a x\right)^{b+1}} d x
$$

That's why, for example,

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}}=\int_{0}^{1} \frac{d x}{(1+x \ln x)^{2}}
$$

