хмельник с.и. Необычный фонтан и гравитомагнетизм

Оглавление

1. Введение

2. Основная математическая модель

3. Вычислительный алгоритм

4. Потоки энергии в необычном фонтане

5. Расчет формы струи

6. Выводы

Литература

Аннотация

Рассматривается необычный подводный фонтан [1]. Строится его математическая модель и показывается, что его форма может быть объяснена существованием значительных по величине гравитомагнитных сил (аналогичных силам Лоренца) и потока гравитомагнитной энергии (аналогичного потоку электромагнитной энергии).

1. Введение

В Англии установлен необычный фонтан [1], который представляет собой водоворот в прозрачном цилиндре - фонтанводоворот "Харибда" – см. рис. 1. Есть публикация [2] и о другом искусственном водовороте, менее впечатляющем, но конструктивно более прозрачном. На рис 2 показан этот водоворот в стакане и его конструкция. Можно указать и на природное явление, напоминающее необычный фонтан [3] – см. рис. 3.

Насколько известно автору, такие конструкции и явления не имеют строгого математического описания. Ранее автор предложил математическую модель потока воды в воронку и из трубы [4]. При этом использовались уравнения гравитомагнетизма – уравнения, подобные уравнениям Максвелла электродинамики ДЛЯ максвеллоподобные уравнения гравитации (далее МΠГуравнения). Взаимодействие между движущимися массами воды описывалось гравитомагнитными силами Лоренца (далее ГЛ-силы), аналогичными силам Лоренца в электродинамике [5]. Дальнейшие

1

рассуждения аналогичны приведенным в [4]. Однако есть принциальное отличие струи, вытекающей под напором из трубы, и струи, поднимающейся в необычном фонтане. В первом случае струя воды расширяется и плотность струи меняется. Во втором случае плотность струи равна плотности окружающей воды, т.к. вода – несжимаемая жидкость. Поэтому форма струи в фонтане должна быть объяснена иначе, чем объяснена форма струи в [4]. Этому ниже уделено основное внимание.

Рис. 1.

Рис. 2.

- 1 стакан
- 2 микроэлектродвигатель
- 3 жестяной диск
- 4 пластиковый тубус
- 5 силикон
- 6 холодная сварка
- 7 провода
- 8 клеммы

Рис. 3.

2. Основная математическая модель

МПГ-уравнения для <u>гравитомагнитных напряженностей</u> *H* и <u>плотностей массовых токов</u> *J* в стационарном гравитомагнитном поле имеют вид:

$$\operatorname{div}(H) = 0, \tag{1}$$

$$\operatorname{rot}(\mathbf{H}) = J, \qquad (2)$$

При моделировании водоворота будем использовать цилиндрические координаты *r*, *\varphi*, *z*. Тогда МПГ-уравнения примут вид:

$$\frac{H_r}{r} + \frac{\partial H_r}{\partial r} + \frac{1}{r} \cdot \frac{\partial H_{\varphi}}{\partial \varphi} + \frac{\partial H_z}{\partial z} = 0, \qquad (3)$$

$$\frac{1}{r} \cdot \frac{\partial H_z}{\partial \varphi} - \frac{\partial H_{\varphi}}{\partial z} = J_r, \tag{4}$$

$$\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} = J_{\varphi},\tag{5}$$

$$\frac{H_{\varphi}}{r} + \frac{\partial H_{\varphi}}{\partial r} - \frac{1}{r} \cdot \frac{\partial H_{r}}{\partial \varphi} = J_{z}.$$
(6)

Кроме того, токи должны удовлетворять условию непрерывности $\operatorname{div}(J) = 0,$ (7)

или, в цилиндрических координатах,

$$\frac{J_r}{r} + \frac{\partial J_r}{\partial r} + \frac{1}{r} \cdot \frac{\partial J_{\varphi}}{\partial \varphi} = 0.$$
(8)

Эти уравнения описывают, в сущности, процессы взаимодействия токов, напряженностей и ГЛ-сил. Последние определяются как

$$F_L = G \cdot \xi \cdot S_o. \tag{9}$$

где G - гравитационная постоянная, ξ - гравитомагнитная проницаемость среды [5],

$$S_o = (J \times H). \tag{10}$$

Это векторное произведение в цилиндрических координатах имеет вид:

$$S_{o} = \begin{bmatrix} S_{or} \\ S_{o\varphi} \\ S_{oz} \end{bmatrix} = \begin{bmatrix} J_{\varphi}H_{z} - J_{z}H_{\varphi} \\ J_{z}H_{r} - J_{r}H_{z} \\ J_{r}H_{\varphi} - J_{\varphi}H_{r} \end{bmatrix}$$
(11)

3. Вычислительный алгоритм

В [4] показано, что уравнения (2.3-2.6, 2.8) имеют следующий вид:

$$H_r = \eta \cdot f_8(r) \cdot \exp(\eta \cdot z) \tag{1}$$

$$H_{\varphi} = \eta \cdot f_2(r) \cdot \exp(\eta \cdot z) \tag{2}$$

$$H_z = f_3(r) \cdot \exp(\eta \cdot z) \tag{3}$$

$$J_r = -\eta^2 f_2(r) \cdot \exp(\eta \cdot z), \qquad (4)$$

$$J_{\varphi} = \eta^2 f_7(r) \cdot \exp(\eta \cdot z), \qquad (5)$$

$$J_{z} = \eta \cdot f_{10}(r) \cdot \exp(\eta \cdot z), \qquad (6)$$

где

$$f_8(r) = f_{80}(r) \cdot (1 - X), \tag{7}$$

$$f_7(r) = f_8(r) + \frac{f_8'(r)}{r} + f_8''(r), \qquad (7a)$$

$$f_2(r) = q \cdot r(1 - X), \tag{8}$$

$$f_{10}(r) = \frac{f_2(r)}{r},$$
(9)

$$f_3(r) = \frac{f_8(r)}{r} + f_8'(r), \qquad (10)$$

$$X(r,R) = 1/(1 + \exp(-2g(r-R))),$$
(11)

 h, q, η, g – некоторые константы.

Возможны различные функции $f_{80}(z)$, а от этой функции зависят функции $f_8(z), f_7(z), f_3(z)$. Мы рассмотрим простейший случай, когда функция $f_{80}(z)$ является константой, и тогда

$$f_{80}(z) = h, \ f_7(r) = f_8(r), \ f_3(r) = \frac{f_8(r)}{r}.$$
 (13)

Здесь X – аппроксимация функции Хевисайда, величина g характеризует "ширину скачка" при аппроксимации, R - радиус струи, то значение координаты r, в которой функция меняет значение с 0 на 1. Функция R(z) требует определения.

4. Потоки энергии в необычном фонтане

В [6] была описана структура потоков электромагнитной энергии постоянного тока в цилиндрическом проводе с постоянным током. Показано, что плотность потока электромагнитной энергии

$$S = \rho(J \times H). \tag{1}$$

где *σ* - удельное электросопротивление. По аналогии определим плотность потока гравитомагнитной энергии в водяной струе

$$S = \boldsymbol{\sigma} \cdot (\boldsymbol{J} \times \boldsymbol{H}), \tag{2}$$

где σ - удельное сопротивление массовому току. Следовательно, $S = \sigma \cdot S_{\alpha}$, (3)

где S_{a} определяется по (2.11).

Рис. 4.

На рис. 4 показано вертикальное сечение фонтана в плоскости (r, z) и граница струи. Поток гравитомагнитной энергии

$$S = \begin{bmatrix} S_r \\ S_{\varphi} \\ S_z \end{bmatrix}$$
(4)

циркулирует внутри струи. На рис. 4 показаны проекции S_r , S_z этого потока и сумма этих проекций S_{rz} . Проекция S_{φ} направлена по касательной к окружности струи и на рис. 4 не показана. Возможен случай, когда суммарная проекция S_{rz} в окрестности границы направлена перпендикулярно границе, а на самой границе струи равна нулю. Если такое условие соблюдается на всех точках границы, то <u>поток гравитомагнитной энергии всегда остается внутри</u> <u>струи</u>.

Рассуждая как в [7], заметим, что интеграл плотности этого потока S по объему V струи пропорционален импульсу электромагнитного поля P в этом объеме, поскольку, как известно, в системе СИ

$$\frac{dP}{dV} = \frac{1}{c^2} S = \frac{1}{c^2} \left[\overline{E} \times \overline{H} \right].$$
⁽⁵⁾

В силу закона сохранения импульса струя сохраняет свою целостность, ибо при изменении формы струи изменяется интеграл плотности потока гравитомагнитной энергии.

5. Расчет формы струи

Сформулированное выше условие позволяет рассчитать форму струи. По (2.11, 2.1-2.6) найдем:

$$S_{or} = J_{\varphi}H_{z} - J_{z}H_{\varphi} =$$

$$= \eta^{2}f_{\gamma}(r) \cdot \exp(\eta \cdot z)f_{3}(r) \cdot \exp(\eta \cdot z) - \qquad (1)$$

$$-\eta \cdot f_{10}(r) \cdot \exp(\eta \cdot z)\eta \cdot f_{2}(r) \cdot \exp(\eta \cdot z)$$

$$S_{oz} = J_{r}H_{\varphi} - J_{\varphi}H_{r} =$$

$$= -\eta^{2}f_{2}(r) \cdot \exp(\eta \cdot z)\eta \cdot f_{2}(r) \cdot \exp(\eta \cdot z) - \qquad (2)$$

$$-\eta^{2}f_{\gamma}(r) \cdot \exp(\eta \cdot z)\eta \cdot f_{8}(r) \cdot \exp(\eta \cdot z)$$

ИЛИ

$$S_{or} = \eta^2 \exp(2\eta \cdot z) (f_7(r) \cdot f_3(r) - f_{10}(r) \cdot f_2(r)), \qquad (3)$$

$$S_{oz} = -\eta^{3} \exp(2\eta \cdot z) (f_{2}(r) \cdot f_{2}(r) + f_{7}(r) f_{8}(r)).$$
(4)

Далее учтем (2.7-2.10, 2.13) и получим:

$$S_{or} = -\eta^2 \exp(2\eta \cdot z)(1 - X)^2 \left(-\frac{h^2}{r} + q^2 r\right),$$
(5)

$$S_{oz} = -\eta^{3} \exp((2\eta \cdot z)(1 - X)^{2} (q^{2}r^{2} + h^{2}).$$
(6)

Найдем теперь угол α , показанный на рис. 4:

$$tg(\alpha) = \frac{S_{oz}}{-S_{or}} = -\eta \left(q^2 R^2 + h^2 \right) / \left(-\frac{h^2}{R} + q^2 R \right), \tag{7}$$

ИЛИ

$$tg(\alpha) = \eta R \left(q^2 R^2 + h^2 \right) / \left(h^2 - q^2 R^2 \right),$$
(8)

где R - радиус струи. Обозначим функцию образующей струи как z = Q(R). Если угол α является углом наклона касательной к этой функции, то

$$tg(\alpha) = \frac{d}{dR}Q(R).$$
(9)

Следовательно,

$$Q(R) = \int \eta R \left(h^2 + q^2 R^2 \right) / \left(h^2 - q^2 R^2 \right) dR, \qquad (10)$$

Интегрируя (10), получаем:

$$Q(R) = -\eta \left(\frac{h^2}{q^2} \ln \left(\frac{h^2}{q^2} - R^2\right) + \frac{R^2}{2}\right) + Q_o.$$
 (11)

На рис. 5 в верхнем окне показана функция z = Q(R) и для сравнения точками показана функция $z = -\eta \log(R-1)$. В нижнем окне показана функция $\exp(\eta \cdot z)$, входящая в формулы (3.1-3.6).

При этом принято, что $\frac{h^2}{q^2} = 1$, $\eta = -0.8$, $Q_o = -3$.

6. Выводы

Сравнивая рис 1 и рис. 5, можно заметить сходство реальной и модельной форм необычного фонтана. Следовательно, можно утверждать, что уравнения гравитомагнетизма подтверждаются экспериментально. При этом подтверждается существование значительных по величине гравитомагнитных сил и потока гравитомагнитной энергии.

Литература

- 1. <u>http://www.mirkrasiv.ru/articles/fontan-vodovorot-haribda-charybdis-sanderlend-velikobritanija.html</u>
- 2. Бондаров М.Н., Савичев В.И. Искусственный водоворот и его применение,
 - http://enter-the-ninja.livejournal.com/581189.html
- 3. <u>https://www.youtube.com/watch?v=fmMVGil0sXg</u>
- 4. Хмельник С.И. О потоке воды в воронку и из трубы, <u>http://vixra.org/pdf/1506.0201v3.pdf</u>
- Хмельник С.И. Еще об экспериментальном уточнении максвеллоподобных уравнений гравитации, «Доклады независимых авторов», изд. «DNA», printed in USA, ISSN 2225-6717, Lulu Inc., ID 14407999, Россия-Израиль, 2014, вып. 25, ISBN 978-1-304-86256-3, <u>http://lib.izdatelstwo.com/Papers/25.62.pdf</u>, см. также <u>http://vixra.org/pdf/1404.0089v1.pdf</u>
- 6. Хмельник С.И. Структура потока электромагнитной энергии в проводе с постоянным током, http://vixra.org/pdf/1504.0061v1.pdf
- Хмельник С. И. К вопросу о внутриядерных силах. «Доклады независимых авторов», изд. «ДНА», ISSN 2225-6717, Россия – Израиль, 2014, вып. 27, ISBN 978-1-312-19894-4, printed in USA, Lulu Inc., ID 14739921, <u>http://lib.izdatelstwo.com/Papers/27.127.pdf</u>, см. также <u>http://vixra.org/pdf/1405.0296v2.pdf</u>