Mouhcine AMRAR

Bachelor mathematical sciences
amrarmouhcine83@gmail.com

SUMMARY

This work is a study of divisibility and these criteria, in which we will give general relationships and divisibility criteria. We begin this work by answering the following question: what conditions should check the digits dialing the number to make it divisible by d? Among the most known and used criteria are the divisibility by 2, 3, 5, 11...

We know well that for $D \in \mathbb{Z}$, It is said that it is divisible by 3 If the sum of the digits component D is divisible by 3 , and D is written as $\overline{a_{1} a_{2}, \ldots a_{1}}$ in base $10 D$ is said divisible by 3, if and only if $a_{1}+a_{2}+a_{3}+\cdots+a_{i}$ is divisible by 3. There are also criteria of divisibility for numbers less than 20 , for $d=p+10$ and $p<10$, we have this result: $\overline{a_{1}} a_{2}, \ldots a_{t}(10)$ is divisible by d, if and only if $p^{0} a_{i}-p^{1} a_{i-1}+p^{2} a_{i-2}-p^{3} a_{i-3} \cdots p^{(i-1)} a_{1}$ is divisible by d.We note that for $p=1$ it realizes the divisibility of 11 , and for $p=2$ is right and we have also, if 12 divides $\overline{a_{1} a_{2}, \ldots a_{i}}{ }_{(10)}$ so 12 divides $\overline{a_{1} a_{2}, \ldots a_{i}}(2)$

We give a criteria of divisibility by 7 , let $D=\overline{a_{1} a_{2}, \ldots a_{1}}{ }_{(10)}$ an integer, we say that D is divisible by 7 , if $3 \overline{a_{1} a_{2} \ldots a_{i-1}}{ }_{(10)}-2 a_{i}-(i-2)$ is divisible by 7. We can also write that if 7 divides $\overline{a_{1} a_{2}, \ldots a_{i}}(10)$, it divides $1 a_{i}+3 a_{i-1}+2 a_{i-2}+132 \overline{a_{1}} \bar{a}_{2} \ldots a_{i-3}(10)$, and divides

$$
\sum_{k=0}^{i-1}\left(10^{k}-k^{\prime}\right) a_{i-k}
$$

In this part we give a property for compounds three-digit numbers. Let be D an integer written as $\overline{a_{1}} \overline{a_{2} a_{3}}{ }_{(10)}$ there are some criteria of divisibility, let $d \in \mathbb{Z}$, and $t \in$ $\mathbb{N}^{*}, d=8-t$ is said that $\overline{a_{1} a_{2} a_{3}}{ }_{(10)}$ is divisible by d if and only if $\overline{a_{2} a_{3}}{ }_{10}-$ $\left(10 \times 2^{t+1} a_{1}\right)$ is divisible by d.In this relationship it is true for $0 \leq d \leq 9$, and we can generalize and we obtain for $d \in \mathbb{Z}$, and $I \in \mathbb{N}^{*}, d=8-t$ we say that $\overline{a_{1} a_{2}, \ldots a_{i}}{ }_{(10)}$ is divisible by d if and only if $\bar{a}_{\imath-\jmath} \bar{a}_{\imath-\jmath+1} a_{\imath-\jmath+2} \cdots a_{\imath-1} a_{\imath(10)}-2^{t+1}\left(10 \bar{a}_{1} a_{2} \cdots a_{\imath-\jmath-1}(10)\right.$ is divisible by d. Now we take an integer d equal in ${\overline{b_{1}} \bar{b}_{(10)}}$ and we study the divisibility of
${\overline{a_{1}} a_{2}}_{(10)}$ we have if ${\overline{b_{1} b_{2}}}_{(10)}$ divides ${\overline{a_{1}} a_{2}}_{(10)}$ then it divides $\left[\left(a_{1} \times b_{2}\right)-\left(a_{2} \times b_{1}\right)\right]$, it divides
$\left[\left(b_{1} \times b_{2} \times a_{1}\right)-a_{2}\right]$ now we take D consisting of three digits, we obtain if ${\overline{b_{1}} b_{2}}_{(10)}$ devides $\overline{a_{1} a_{2} a_{3}}(10)$ we find that $\left[\left(b_{1} \times b_{2} \times a_{1} a_{2}\right)-a_{3}\right]$ is a multiple of ${\overline{b_{1}} b_{2}}_{(10)}$. In the same sense, $\overline{a_{2} a_{3}}(10)+N^{2} a_{1}$ is a multiple of ${\bar{f} b_{1} b_{2}}_{(10)}$ and N equal to $\overline{b_{1} b_{2}}{ }_{(10)}-10$. For a number with n digits we have to say as a generalization, $\overline{a_{1} a_{2} \ldots a_{\boldsymbol{i}}}{ }_{(10)}$ is divisible by d and d equal to $10+N$ if d divides M. when

$$
M=\sum_{k=i-1}^{i} 10^{i-k} a_{k}+N^{2} \sum_{k=1}^{i-2} 10^{i-2-K} a_{k}
$$

In this part we give relations for the compound numbers of n figures, are d and D
integers, $d={\overline{b_{1} b_{2} \ldots b_{j}}}_{(10)}$ and $D={\overline{a_{1} a_{2} \ldots a_{1}}}_{(10)}$, it is said that D is divisible by d, if only if d divides $(10-11 d){\overline{a_{1}} a_{2} \ldots a_{t-1}}_{10}+(1-d) a_{i}$, d divides $(10-d){\overline{a_{1}} a_{2} \ldots a_{t-1}}_{10}+$ a_{i} or d divides $(100-d) \overline{a_{1} a_{2} \ldots a_{\imath-2}}{ }_{10}+{\overline{a_{i-1}} a_{10}}_{10}$ for this relationship we can change the base 10 by the following bases $\left(10^{2} \pm l . d\right)\left(10^{2} \pm d^{l}\right)\left(10^{2} \pm l . d^{l}\right)$. as we can generalize all this by writing, if D is divisible by d then $\left(10^{m}-d\right){\overline{a_{1}} a_{2} \ldots a_{t-m}}_{10}+$ $\overline{\boldsymbol{a}_{\boldsymbol{\imath}-m-1} \cdots \boldsymbol{a}_{\boldsymbol{\imath}}}{ }_{10}$ is divisible by d we add also this generalization, let (n, N) two integers, and (m, N^{\prime}) two natural numbers, we say if d divides D so d divides $\left(n 10^{m}\right.$ $\left.N d^{N \prime}\right){\overline{a_{1}} a_{2} \ldots a_{\imath-m}}_{10}+n\left({\overline{a_{i-m-1}} \cdots a_{10}}_{10}\right)$. sometimes we find numbers that check divisibility by two bases, in base 10 and base μ, like 11 and 13 , we have if d divides D in base 10 it divides it in base 11 and in 13, we have also if d divides D in base 10 so it divides it in base 14 but we must add $(10-\mu)$ we write :
$\overline{\boldsymbol{d}}_{(10)} / \overline{\boldsymbol{D}}_{(10)} \Rightarrow \overline{\boldsymbol{d}}_{(\mu)} /\left(\overline{\boldsymbol{D}}_{(\mu)}+(\mathbf{1 0}-\mu)\right)$,
We have for $26 \overline{\boldsymbol{d}}_{(10)} / \overline{\mathbf{D}}_{(10)} \Rightarrow \bar{d}_{(\mu)} /\left(\left(\bar{D}_{(d-\mu)}+(10-\mu)\right)\right.$,
And for 28 we have $\left.\overline{\boldsymbol{d}}_{(10)} / \overline{\mathrm{D}}_{(10)} \Rightarrow \bar{d}_{(\mu)} \overline{\operatorname{AD}}_{(\mu-d)}+(10-\mu)\right)$, if $\mu-d<0$ we use $|\mu-d|$.

Progressive divisibility

Now we give a relationship in which we will change the base from a big value to a small one in order to facilitate the divisibility. Are $D=\overline{a_{1} a_{2} \ldots a_{1}}(\mathbf{1 0})$ and $d={\overline{b_{1}} b_{2} \ldots \bar{b}_{(10)}}$, two integers related, if d divides D and $j \geq 2$ it exists an integer $\xi<d$, $\xi=D \wedge d$ then d divides $(10-\xi) \overline{a_{1} a_{2} \ldots a_{i-1}}{ }_{(10)}+a_{i}$ and it divides $(10 \pm \xi){\overline{a_{1}} a_{2} \ldots a_{i-1}}_{(10+\xi)}+a_{i}$ the same thing for $(10 \pm \xi){\overline{a_{1}} \bar{a}_{2} \ldots a_{i-1}}_{(10-\xi)}+a_{i}$, we can use these:

$$
\left(10^{2} \pm l . \xi\right)\left(\left(10^{2} \pm \xi^{l}\right)\right)\left(10^{2} \pm l . \xi^{l}\right)
$$

we want to know if ${\overline{a_{1}}{ }^{a_{2}}}_{(10)}$ is divisible by d and so we try to minimize the number by fewer, to simplify the knowledge if it divisible or not by d, we have d divides
${\overline{a_{1}} a_{2}}_{(10)}$ so it divides $(10-d) a_{1}+a_{2}$, we take $\overline{\alpha_{1} \alpha_{2}}{ }_{(10)}=(10-d) a_{1}$, and takes I an integer equal to \mid d. $a_{1}(10)^{-1} \mid$ we have $\alpha_{1}=\left|a_{1}-l\right|$, and $\alpha_{2}=\left|10 l-d a_{1}\right|$ We do the same operation l: $\overline{\beta_{1} \beta_{2}}{ }_{(10)}=\overline{\alpha_{1} \alpha_{2}}{ }_{(10)}+a_{2}$ then we obtained: $\beta_{1}=\left|a_{1}-l+1\right|$, and $\beta_{2}=\left|10 l-d a_{1}+a_{2}-10\right|$, if $\beta_{2}<0$ we have $10-\beta_{2}$ becomes $\beta_{1}-1$, Sometimes to facilitate the calculate is whether $/$ / m mst go through several steps (operations) that is to sayd/ ${\overline{a_{1} a_{2}}}_{(10)} \mapsto d /{\overline{b_{1} b_{2}}}_{(10)} \mapsto d /{\overline{c_{1} c_{2}}}_{(10)} \mapsto d /{\overline{e_{1} e_{2}}}_{(10)}$

We must define the values e_{1} ete e_{2} from primary values, but first we must know the number of steps we done .for example $d / a_{1} a_{2}{ }_{(10)} \mapsto d / \overline{b_{1} b_{2}}{ }_{(10)} \mapsto d / \overline{c_{1} c_{2}}{ }_{(10)}$ the number of steps we made is two when the values c_{1} and c_{2} are: $c_{1}=\mid 2+a_{1}-$ $\left(l_{1}+l_{2}\right) \mid$, and $\quad c_{2}=\left|10\left(l_{1}+l_{2}\right)-20-d\left(2 a_{1}+l_{1}-1\right)\right|$, where $l_{1}=\left|d . a_{1}(10)^{-1}\right|, l_{2}=\left|d . b_{1}(10)^{-1}\right|$. And for three steps we have $d / \overline{a_{1} a_{2}}(10) \mapsto$ $d /{\overline{b_{1} b_{2}}}_{(10)} \mapsto d /{\overline{c_{1} c_{2}}}_{(10)} \mapsto d / \overline{e_{1} e_{2}}{ }_{(10)}$ we have the values and e_{1} and e_{2} are: $e_{1}=\left|3+a_{1}-\left(l_{1}+l_{2}+l_{3}\right)\right|$ and
$e_{2}=\left|10\left(l_{1}+l_{2}+l_{3}\right)-\mathbf{3 0}-d\left(3 a_{1}+l_{2}+1\right)\right|$. We will generalize these relationships for N steps, we have: Let $d /{\overline{a_{1} a_{2}}}_{(10)}$ accepte N steps and obtained $\overline{m_{1} m_{2}}{ }_{(10)}$ to define the valuesm m_{1} andm m_{2} were two cases: For Nis odd we have $m_{1}=\mid N+a_{1}-\left(l_{1}+l_{2}+\cdots+\right.$ $\left.l_{N}\right) \mid$ andm $m_{2}=\left|\mathbf{1 0}\left(l_{1}+l_{2}+\cdots+l_{N}\right)-\mathbf{1 0 N}-d\left(N a_{1}+l_{N-1}+1\right)\right|$. For N is even we obtained $\quad m_{1}=\left|N+a_{1}-\left(l_{1}+l_{2}+\cdots+l_{N}\right)\right|$ and
$m_{2}=\left|\mathbf{1 0}\left(l_{1}+l_{2}+\cdots+l_{N}\right)-\mathbf{1 0 N}-d\left(N a_{1}+l_{N-1}+1\right)\right|$ We will repeat this operation but with a three-digit number $\overline{a_{1} a_{2} a_{3}}{ }_{(10)}$ we follow the same method and we obtain if ${\overline{b_{1} b_{2} b_{3}}}_{(10)}$ divides $\overline{a_{1} a_{2} a_{3}}{ }_{(10)}$ we have:
$\alpha_{1}=\left|a_{1}-l_{1}\right|, \alpha_{2}=\left|10 l_{1}-\left(d a_{1}+a_{2}-l_{2}\right)\right|, \alpha_{3}=\left|10 l_{2}-d a_{2}\right|$ and $_{1}=\mid$ d. $a_{1}(10)^{-1}\left|, l_{2}=\right|$ d. $\overline{a_{1} a_{2}}\left(\mathbf{1 0)}(10)^{-2} \mid\right.$ and to determine b_{1}, b_{2} and b_{3} : $b_{1}=\left|a_{1}+1-l_{1}\right|, b_{2}=\left|10 l_{1}-d a_{1}-a_{2}+l_{2}-9\right|$ and $b_{3}=\left|a_{3}+10 l_{2}-d a_{2}-10\right|$ $l_{1}=\left|d . a_{1}(10)^{-1}\right|, l_{2}=\left|d . \overline{a_{1} a_{2}}(\mathbf{1 0})(10)^{-2}\right|$. We generalize this with numbers had n digits written as $\overline{a_{1} a_{2} \ldots a_{1}}{ }_{(10)}$ we will start with one step $(N=1)$ that through the values α_{h} to have the values b_{h} so we have $\alpha_{1}=10 l_{1}+l_{2}$, $\alpha_{2}=10 l_{2}-d\left({\overline{a_{1}} a_{2} \ldots a_{8}}_{(10)}+a_{9}\right) l_{3} \quad \alpha_{3}=10 l_{3}-d\left({\overline{a_{2}} \ldots a_{8}}_{(10)}+a_{9}\right) l_{4}$ and $\alpha_{4}=10 l_{4}-d\left({\overline{a_{3} \ldots a_{8}}}_{(10)}+a_{9}\right) l_{5} \ldots$
$\alpha_{8}=10 l_{8}-d\left({\overline{a_{7} a_{8}}}_{(10)}+a_{9}\right) l_{9}$ and $\alpha_{9}=10 l_{2}-d\left(a_{8}+a_{9}\right)$ It was also
$\alpha_{i}=10 l_{i}-d a_{i-1}, \alpha_{i-1}=10 l_{i-1}-d a_{i-2}+a_{i-1}$. And therefore the values of $b_{1}, b_{2} \ldots b_{N}$ we have: $b_{1}=\alpha_{1}+1 ; b_{2}=\alpha_{2} ; \ldots ; b_{N}=\alpha_{N}-(N-2)$ and for

$$
l_{10}=\left|d \cdot{\overline{a_{1}} a_{2} \ldots a_{9}}_{(10)} \cdot(10)^{-9}\right|
$$

Divisibility of numbers often used

In this part of work we give the criteria divisibility of numbers often used, we take d and N two integers we say that N is divisible by d if d divides $\left.2^{2}+3^{2}+\cdots+N^{2}\right)-[(N-1)(1+2+3+\cdots+N)]$ we take an integer $\quad N=a+$ n it said that's divisible by difd divides $a^{2}+n+2 a n+(4+6+8+\cdots+2 n)$ we can take N a natural number written as $N=1+2+3+\cdots+M$ it said that's divisible by d if d divides $(M-1)^{-1}((M+1)+2(M+1)+3(M+1)+\cdots+(M-1)(M+1))$ or we write d divides $N(M+1)(M-1)^{-1}$, In the same purpose it said also that is divisible by d if $M(M-1)^{-1}(2+2(M+1)+3(M+1)+\cdots(M-1)(M+1))$ or it divides $M+2(2+4+6+8+\cdots+2(M-1))$, in the same ame we say that divides $4 N-M^{2}$ when M is even number, it divides also $M+(2+4+6+8+\cdots+(2 M-4))$, now let $N^{\prime}=2 N$ we have N^{\prime} is divisible by dif $-M+3+5+7+\cdots+(2 M+1)$. We can find numbers on forme N^{2}, so in what conserning this kind of numbers we say that is divisible byd ifd divides $(1+3+5+7+9+\cdots+(2 N-1))$.

Divisibility of A^{N}

Either A an integer and N is a positive integer we have if divides A^{N} so it divides $A\left[(A-1) \times\left(A^{2}+A^{3}+A^{3}+\cdots+A^{n-1}\right)\right]+A^{3}$ we can write $A=a+1$ and we say that ifd divides $(a+1)^{N}$ so it divides $1+N a+\binom{n}{0} A^{N}+\binom{n}{1} A^{N-1}+\cdots+\binom{n-1}{N-1} A$.

In this part of work we study numbers in the form $\binom{k}{n}$, let N a natural number equal to $\boldsymbol{N}=\binom{4}{0}(\boldsymbol{a}+4)^{3}+\binom{4}{2}(\boldsymbol{a}+2)^{3}+\binom{4}{4}(\boldsymbol{a})^{3}$ we say that d divides N if d divides $\binom{4}{1}(\boldsymbol{a}+3)^{3}+\binom{4}{3}(\boldsymbol{a}+1)^{3}$. let D in integer equal to $\binom{N}{1}+\binom{N}{2}+\binom{N}{3}+\cdots+\binom{N}{N}$ it said that is divisible by dif 2^{N} is divisible by d.
let D is an integer and (a, n) two natural numbers $/ \boldsymbol{k} \in\{0,1,2,3, \cdots, n\} / k=2 \alpha$. Let M $M=\binom{n}{0}(a+n)^{n-1}+\binom{n}{1}(a+(n-1))^{n-1}+\binom{n}{2}(a+(n-2))^{n-1}+\cdots+\binom{n}{n}(a)^{n-1}$ we say that d divides M if it exists $k^{\prime} \in\{1, \cdots, n\}$ and $k=2 \alpha^{\prime}+1$ which it exists M^{\prime} $M^{\prime}=\binom{n}{0}(a+n)^{n-1}+\binom{n}{1}(a+(n-1))^{n-1}+\binom{n}{2}(a+(n-2))^{n-1}+\cdots+\binom{n}{n}(a)^{n-1}$ and $d M^{\prime}$ is divisible by d.we take an integer D equal to $\binom{2 N}{k}+\binom{2 N+1}{k}$ we have two cases the first isk $=2 \alpha$ so d divides D if d divides $\binom{2 N+2}{k}+1$, the second case is $k=2 \alpha+1$ it said that D is divisible by dif divides $\binom{2 N+2}{k}-1$. we give D the value $\binom{N}{k}+\binom{n+1}{k-1}$ so we have ifk $=2 \alpha+1$ we say that dis divisible by dif $\binom{N+1}{k}+N$ is divisible by d, the second case when $k=2 \alpha$ and $k \leq 2$ we have d divides D if $\binom{N+1}{k}+1$ is divisible by d, the last case if $2<k \leq 4$ we have if d divides $\binom{N+1}{k}+2 N$ so it divides D. for simplify the expression if we have $\boldsymbol{D}=\binom{B}{A}$, let n and k both natural numbers, and $\boldsymbol{A}=\boldsymbol{k}+\mathbf{1}, \boldsymbol{B}=$ $N+2$ we have if divides $\binom{B}{A}$ so it divides $\binom{N}{k}+\binom{N+1}{k}+\binom{N}{k+1}$.

References

Work done without references.

