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In this paper, we look into the difficult question of electron deep levels in the hydrogen atom. An 
introduction shows some general considerations on these orbits as “anomalous” (and usually rejected) 
solutions of relativistic quantum equations. The first part of our study is devoted to a discussion of the 
arguments against the deep orbits and for them, as exemplified in published solutions. We examine 
each of the principal negative arguments found in the literature and show how it is possible to resolve 
the questions raised. In fact, most of the problems are related to the singularity of the Coulomb potential 
when considering the nucleus as a point charge, and so they can be easily resolved when considering a 
more realistic potential with finite value inside the nucleus. In a second part, we consider specific works 
on deep orbits as solutions of the relativistic Schrödinger and of the Dirac equations, named Dirac Deep 
Levels (DDLs). The latter presents the most complete solution and development for spin ½ particles, 
and includes an infinite family of DDL solutions. We examine particularities of these DDL solutions 
and more generally of the anomalous solutions. Next we analyze the methods for, and the properties of, 
the solutions that include a corrected potential inside the nucleus, and we examine the questions raised 
by this new element. Finally we indicate, in the conclusion, open questions such as the physical 
meaning of the relation between quantum numbers determining the deep levels and the fact that the 
angular momentum seems two orders-of-magnitude lower than the values associated with the Planck 
constant. As a prerequisite to a deep comprehension of the resolution methods, we recall in the 
appendices some essential elements of the Dirac theory. 

 
 

Introduction 
 
For many decades, the question of the existence of electron deep orbits (EDLs) for the hydrogen atom 
led to numerous works and debates. Why once more a study on this subject? For several reasons: 

• the arguments in favor of the deep orbits have become progressively more mature by the use 
of relativistic quantum tools for a full three-dimensional description of the system; 

• by accepting the reality of a non-singular central potential within a nuclear region, many 
mathematical arguments against anomalous solutions of the relativistic equations no longer 
pertain; 

• numerical evaluation of the relativistic equations are now detailed and available for 
interpretation of the models, their implications, and their predictions; 

• and, above all, recognition of these levels opens up a whole new realm of atomic, nuclear, 
and subatomic-particle physics as well as nuclear chemistry. 

 
There are various theoretical ways to define a state of the hydrogen atom with electron deep level 
(EDL) or deep Dirac level (DDL) orbits. In the following, we denote H# as any state of hydrogen atom 
with EDL orbits.  Some authors use the term hydrino for denoting the H# states owing to the work of [1] 
on the hypothetical existence of H atoms with orbit levels under the Bohr ground level and where the 
values of orbit radii are fractional values of the Bohr radius. Here we do not use this term, a physical 
concept specifically attached to the cited work, because it is not deduced from quantum equations, 
while we essentially consider the states H# obtained by the methods of relativistic quantum physics. 
 
With the quantum equations habitually used in the literature for computing the bound states of the H 
atom, we can note that there is in general a crossroad with a choice of value or a choice of sign for a 
square root in a parameter. According to which path is chosen, the resolution process leads either to the 
usual solution or to an unusual one called an "anomalous" solution; one that is rejected in the Quantum 
Mechanics Textbooks. 
 
In our present study we note that a H# solution is always an anomalous solution but every anomalous 
solution is not a H# solution. For example, the anomalous solution also contains the regular energy 
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levels of anti-hydrogen. We will see below that it is easy to recognize H# solutions, if we have an 
expression of the anomalous solutions obtained by an analytic method. 
 
A solution provides the eigenvalues of the Hamiltonian, representing the total energy of the electron, in 
the form of a family of quantized energy levels depending on quantum numbers. We consider only 
relativistic equations because, in the deep level orbits considered here, the electrons are relativistic. 
Indeed, we can make a quick computation: 

In [2] the authors plot the curve of the normalized electron density of the deep orbit 
wavefunction corresponding to the ground-state DDL orbit (-2s), and this curve has a peak for a 
radius equal to ~1.3 fm. By using the formula of the Coulomb energy potential CP = −αch/r, we 
can deduce |CP|~1.09 MeV for this deep orbit. On the other hand, we can deduce from the 
fundamental dynamics principle in the relativistic framework, that an electron on this deep orbit 
has a potential energy equal, in absolute value, to γmv2 = |CP| ~ 1.09 MeV, where v is the 
electron velocity. The relativistic coefficient γ is equal to (1- v2/c2)-1/2. By simple algebraic 
transformations, we can deduce a quadratic equation on an unknown parameter V = v2. From the 
positive root of this equation, we obtain v = 2.75 108m/s, β ~ 0.91 and γ ∼ 2.5. These results 
confirm that the electron is actually relativistic. 
 

Of course, it is possible to obtain anomalous solutions by means of a non-relativistic equation, such the 
classical Schrödinger equation. But in this case the energy levels are the same as the regular ones even  
if the wavefunctions are different from the regular solutions. This corresponds to a class of solutions we 
name “pseudo-regular”, obtained also by relativistic equations. This class of solutions is described in 
the Part II, section II.3.2. “The other energy values provided by the algebraic expression E”. 
 
The total energy E corresponding to a regular solution in a non-relativistic form for a bound state 
electron is expressed in negative value and |E| << m c2. In relativistic form, the rest mass of the electron 
is included and, for atomic electrons, E ~ mc2(1 - ε). We can recognize a H# solution, if the relativistic 
total energy is of the form E ~ mc2ε. Here ε << 1 and it depends on the fine structure constant α and on 
quantum numbers. 
 

As the movement of the electron is in a central field, its eigenstate equation is usually written in 
spherical coordinates and so it can be decomposed into a part depending on angular parameters θ, φ, and 
another part, which is a radial equation. The equation on angular parameters has for solutions the 
spherical harmonics Y(θ,φ) and the wavefunctions ψ(r,θ,φ) verify ψ(r,θ,φ) = R(r)Y(θ,φ), where R(r) is 
the solution of the radial equation (here we omitted the usual quantum numbers indexes to simplify the 
writing). The expression of the wavefunction can take a more complex form, for example when using 
the Dirac equation, but in any case only the radial part can raise questions. Thus, we consider the 
reasoning on the radial equations and on the radial wavefunctions. 
 
I.  Discussion on the arguments against the H# states. 
 
Here we classify our reflections according to the arguments found in the literature against the existence 
of these special states of the hydrogen atom and we discuss these arguments. 
 
-1. The wavefunction can have a singular point at the origin 

This argument is rising in all known cases of H# states with a 1/r Coulomb potential. The spatial part of 
the solutions of the radial equation, in the most general form, has several factors: 
  - one factor is a decreasing exponential  exp(r) such that exp(r) −> 0 when r −> +∞ 
   - another one is 1/rs with s a real number, due to the form of the Coulomb potential 
 - and there can be a further one in polynomial form. 
In the case of the "anomalous" solutions, the exponent s of the factor in 1/rs is s > 0, then the radial 
function R(r) −> ∞  when r −> 0 and the wavefunction ψ(r,θ,φ) does not obey a boundary condition. 
This problem comes from the expression of the Coulomb potential in 1/r. 
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Some authors of H# solutions remove this trouble by saying that the classical expression of the central 
potential is a good approximation for the bound state of a single electron atom, but considering the 
nucleus as a mathematical point is an unphysical abstraction. In fact, the Coulomb approximation in 1/r 
of the central potential generated by the nucleus is suitable if the electron is not too near the nucleus. 
At this point, many authors do not consider a non-singular potential and stop without further 
development of the anomalous solution; but others work on this subject in expressing corrected 
potentials in the close vicinity of the nucleus. 
 
That is an actual enhancement of the theory, but it unfortunately entails extra difficulties. Indeed, there 
are no serious difficulties for defining the weakening of the electrical potential very near the charge 
radius of the proton and inside it, by approximating the nucleus as a uniformly charged sphere. But 
problems rise when wanting to find solutions of the equations by taking into account the chosen 
potential for the neighborhood of the nucleus. Let Pn be this potential, then there are two possible 
procedures to use Pn : 
 - 1. to solve (analytically if possible) the equation with the Coulomb potential and to find a first 
solution S1, then to solve the equation with Pn and find a second solution S2 near and inside the 
nucleus, and finally connect S1 and S2 in suitable way, i.e. by taking in account continuity conditions 
and even conditions on derivatives of both solutions at the interface of both potentials. Moreover, we 
note it would be preferable to beforehand connect carefully the potentials themselves. This procedure of 
connection has been used in several works, as e.g. in [2]. 
 - 2. In the case where the solution S1 implies the bound electron is almost at the contact of the 
proton or deeper, i.e. beyond the chosen radius for the potential interface, then we can think S1 is rather 
erroneous. In this case, the best procedure would be to solve the equation with the whole rectified 
potential from 0 to the infinity. Of course such a solution would use numerical tools. Note in the case of 
a complex equation as the Dirac one, the potential is taken into account only when arriving at the couple 
of differential equations on the component functions classically denoted as f and g. Nevertheless, at this 
point, there was not yet a choice between the regular and the anomalous solutions. 
 
-2. The wavefunction can be ‘not square integrable’ 

In this case, the wavefunction cannot be normalized in the entire space and it does not obey a boundary 
condition for the bound states. This case results essentially from the behavior of the wavefunction ψ at 
the origin and not for r −> ∞. 
 
To be normalized, the wavefunction has to satisfy ||ψ(r,θ,φ)|| < +∞. As the Jacobian of the 
transformation from Cartesian to spherical coordinates is J = r2

 sinθ, we have ||ψ(r,θ,φ)|| = ∫|ψ|2sinθ  
r2dθ dφ dr = ∫|Y(θ, φ)| 2dΩ ∫|R(r)|2r2

 dr,  where Ω is the solid angle. Since the spherical harmonics are 
normalized, we have only to verify ∫|R(r)|2r2dr  < +∞. In fact the behavior of |R(r)|2r2 at infinity does not 
make any difficulty, because the leading factor which induces ψ to vanish is a decreasing exponential 
factor. Thus, only the behavior of |R(r)|2r2 at the origin can be a problem. 
 
Here we can cite the work of JanNaudts [3], where a H# state is found by using the Klein-Gordon (K-G) 
equation and the corresponding solution is square integrable. The author derives in one step the K-G 
equation for the bound electron of the hydrogen atom from the time-dependant Schrödinger equation by 
introducing the relativistic formulation of the energy. We recall this process in a more explicit way in order 
to more clearly see what are the implications of the K-G equation and what are its limitations. 
 
 -The "pure" Klein-Gordon equation for a massive scalar field φ has the following form in 
compact tensor notation and with "natural units" (  = c = 1): , φ is a function of the 
three spatial coordinates plus a temporal one and µ stands for the four coordinates numbers, 0 for the 
time and 1,2,3 for the space. The first term, containing the partial derivatives, represents the Laplacian 
in Minkowski space, also called the d'Alembertian. 
 - The relativistic total energy of a free particle of mass m is given by the equation  
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 - If we consider that an electron of charge e is submitted to an exterior electromagnetic field 
defined by an scalar electric potential φ and a vector potential A in covariant form, then the momentum 
vector p becomes p - e A and the energy scalar E becomes E - e φ. By substituting in the previous 
energy equation we obtain . But, as the electron is in a static Coulomb 

potential generated by the central proton, we have A = 0 and e φ is equal to V = − e2r = −α
c
r , where 

α is the well-know electrodynamics coupling constant, also called the fine-structure constant, and is 
equal to ~ 1/137. 
 - Finally we apply the canonical quantization principle, by expressing E and p by differential 
operators (in fact, this "principle" can be mathematically proven): 
     E −>         p −>     
Then the equation energy becomes the K-G equation "dressed" for the electron in the hydrogen atom, as 
written in the cited paper: 
  
where  is a time-dependent radial wavefunction and m the rest mass of the electron. 
Historically this equation was called the relativistic Schrödinger equation. 
 
In fact, the gauge invariance has been applied in the hypothesis of the Fock minimal coupling [5], 
because other gauge invariant terms could be added, e.g. terms dependent of the electric field and/or of 
the induction field: so this equation describes the evolution of a relativistic electron in an exterior 
electromagnetic field while considering that radiation has a negligible effect [5]. Then the author tries 
an ansatz with a function  solution of the equation with the hypothesis l < 3/2 and 
r0 > 0. Of course, do not confuse the parameter l with the usual notation for the angular momentum. 
The condition on the exponent l guarantees the behavior of  at the origin and r0 > 0 its 
behavior at the infinity, in order to this term be integrable. Thus the wavefunction solution is square 
integrable. The resolution by this ansatz leads to an equation to be satisfied by the parameter l: 

 with solutions  l = 12 (1± 1− 4α 2 )  
We can see a possible choice of sign ± before the square root. In both cases, the constraint on l is 
satisfied, i.e. l < 3/2. The choice of the negative sign leads to a regular solution that corresponds to the 
ground energy level associated with the usual quantum number n = 1. Indeed the value of the total 
energy is E  ~ mc2 (1− α2

2 )  and thus the binding energy is equal to BE  ~ −mc2 α2
2  = −13.6 eV and the 

orbit radius r0 is equal to 53 pm. 
  
If the positive sign is chosen, the obtained solution is a H# state, with total energy very low, E ~ 
mc2α ∼ 3.73 keV. That means a high value for the binding energy, since BE ~ mc2(α −1) = −507.3 keV. 
 
J. Naudts calculates excited states by using an analogous ansatz, but the excited states found correspond 
to regular states. The only H# state obtained is the above one, because he considers only spherically 
symmetric states, i.e. the zero angular moment states. Of course, since the exponent l >0, the origin is a 
singular point for the wavefunction. Naudts argues against the problem of this singular point by saying 
that the nucleus is not a point, but its charge is "smeared" over a distance of about 1fm. Solving the 
equation with a smeared out Coulomb potential would produce a solution not diverging at the origin, 
but with certain minor changes on the H# state. 
 
Some criticism can be raised about the application of the K-G equation for a question concerning the 
bound electron of the hydrogen atom. 
 -The most classical criticism concerns the fact that the electron is a fermion, spin ± ½, whereas 
this equation does not take in account the spin and there is no way to introduce the Pauli spin matrices 
without destroying the Lorentz invariance. On one hand, this trouble is slight in comparison with the 
benefit of finding a square integrable H# solution. On the other hand, it's the same problem for the 
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classical Schrödinger equation and its use is well accepted for finding the energy levels for the light 
atoms. Moreover, it is not yet time to worry about fine structure for the H# states. 
 - A more subtle criticism concerns the conservation equation , where  

. 
For the non-relativistic equation, where ρ = |ψ|2  and represents a probability density, ρ satisfies this 
equation, so its space-integral is time-independent and J represents a probability current density. But 
from the solutions of the relativistic equation, the only possibility is that ρ be proportional to 

 and J be proportional to the same expression as above. The occurrences of time 

derivatives in ρ are due to the presence of a second time-derivative in the K-G equation. It can be 
shown that this expression of ρ can be reduced to ρ = |ψ|2  in the non-relativistic limit. Nevertheless, the 
expression for ρ, when including time derivatives, is not necessarily positive and thus it cannot be 
considered as a probability density. However, it is possible to interpret it as a charge density in inserting 
eφ (and eA for J) as indicated in [6] and [7], because a charge can be positive or negative.  Note that 
this problem does not exist when using the Dirac equation because it contains only first time-
derivatives. Regardless, this question does not remove the interest in the H# solution found by [3]. 
 
Finally we note that, if the singular point at the origin can be suppressed (e.g. by means of a corrected 
potential near the origin), the wavefunction is automatically square integrable.  
 
- 3. The orthogonality criterion can be not satisfied 

The Hamiltonian, which represents the total energy, has to be a Hermitian operator in the standard 
quantum mechanics in order for its eigenvalues to have real values. This property leads to the following 
needed condition:  eigenfunctions corresponding to distinct values have to be orthogonal. In [8], de 
Castro examines the asymptotical behavior of the solutions of the non-relativistic Schrödinger, of the 
Klein-Gordon and of the Dirac equations by using the Frobenius series method and by considering the 
variations of this behavior as a function of formal variations of the coupling constant α. Then, from the 
orthogonality condition, he indicates deduced conditions under two different forms for the radial 
solutions, according to which equation is used: 
 For the case of the Scrödinger/Klein-Gordon equation,  

           when  r −> 0 , where  uk(r) = r R(r)   

 For the case of the Dirac equation, we have a condition on the upper and lower components 
denoted f, g in usual notation [6]:    when  r −> 0 
Next he indicates that for the Klein-Gordon case, only the solution such that u is "less singular" than √r 
can satisfy the orthogonality criterion. That implies R(r)  r-l with l < ½. And, for the Dirac solution, he 
finds that only the regular solutions for the components f, g can satisfy the orthogonality, because the 
condition is R(r)  r-l with l < 1. In fact, we can see the problem of the orthogonality condition is 
closely related to the behavior of the radial function at the origin, itself related to the behavior of the 
Coulomb potential at the origin. Therefore, this problem can be resolved by a corrected potential, 
without singular point at r = 0, that corresponds in fact to the physical reality.  
We can also note several works [9] [10] on self-adjoint extension of operators for potentials with 
singularity. In particular, T. Nadareishvili and A. Khelashvili [9] explicitly show that, in the case of the 
Klein-Gordon equation with a Coulomb potential, the “singular” (anomalous) solutions satisfy the 
orthogonality condition and satisfy also directly the boundary condition, i.e.: when r −> 0, lim u(r) = 
u(0) = 0. 
For the Dirac equation with a Coulomb field, it is more complex. Nevertheless, in [11] B.Thaller uses 
the notion of essential self-adjointness: an operator is self-adjoint if it has an unique extension to a 
larger domain, where it is self-adjoint. But to satisfy the orthogonality condition and the boundary 
condition, it is necessary to consider a corrected potential near the nucleus. This point is addressed 
below in the part II, section 4.1. 
 

€ 

∂tρ+∇.J = 0

  

€ 

J= 
2im (ψ *∇ψ−ψ∇ψ*)

  

€ 


2im c 2

(ψ *∂tψ−ψ∂tψ*)

€ 

uk
* duk1
dr

−
duk

*

dr
uk1

# 

$ 
% 

& 

' 
( → 0

€ 

fk
*gk1 − fk1gk

*( )→ 0

€ 

∝

€ 

∝



6 

 
- 4 The strength of the binding seems to increase when the coupling strength decreases 

It can seem absurd to make changes of a physical constant whose value is in principle given by ‘Dame 
Nature’. But, it can be very instructive to make this "thought experiment": to imagine variations of the 
coupling constant α and to examine the consequence of such variations on the energy parameters of the 
hydrogen atom.  
 
 In [13], N.Dombey points to a very strange phenomenon concerning the H# solutions of the relativistic 
equations: when α decreases and tends towards 0, the binding energy of the electron increases and tends 
towards its maximum. The author solves the Klein-Gordon equation in an analytic way leading to a 
Whittaker's (2nd order differential) equation [14] on the radial function and the solution is classically 
achieved by transformation into a Kummer's equation [15]. So the radial function has the general form 
with three factors as we noted in §1, where polynomials are obtained by fixing some parameters of the 
confluent hypergeometric series solution of the Kummer's equation. As in the analytic resolution of the 
Schrödinger equation, there is a choice of sign for a parameter occurring in the expression of the energy 
levels. One choice leads to the regular energy levels, while the other sign leads to anomalous ones, EN, 
where N is a positive quantum number. Here is the expression of total energy at the level N. 

 EN =mc
2[1+ α 2

[N + 12 − (14−α 2 )]2
]−1/2      (1) 

The only difference between the anomalous and the regular solution is the presence of a minus sign 
before the square root in the denominator of the fraction   …½ - √ … instead of a plus sign. For the 
anomalous ground level E0, the author obtains the same expression as the H# state energy found by 
J.Naudts [3], i.e. E0 ~ mc2α = 3.73 keV. Now we can trivially see the total energy E0 of the electron 
decreases when α decreases, which means its binding energy |BE| increases in absolute value. And 
finally |BE| −> mc2, the whole rest mass energy, when α −> 0. 
 
This very strange phenomenon seems to concern only the ground state E0 because, for N ≠ 0, we have 

 for α << 1, thus EN increases when α decreases, which is the "normal" behavior.  Of 

course we have the same result as the ones obtained in [3] by means of an ansatz, but now we have an 
algebraic expression resulting from an analytic process, so we can see at least a mathematical reason for 
discriminating the H# solution among the set of the anomalous solutions. Indeed, the explanation lies in 
the expression Δ in the denominator, Δ = N + ½ - (¼ - α2)1/2. We can see, if N = 0, then Δ can be 
reduced to α2, for α << 1, leading to the expression for E0 above. Nevertheless, we see in some cases 
there is an infinite family of H# states and all these states have the strange behavior w.r.t. the coupling 
constant. It is the case for example in [16], where the relativistic Schrödinger/Klein-Gordon equation is 
solved by using a more direct method as in [6] providing an infinity of H# states. An analogous result is 
obtained by means of the Dirac equation. 
 
Note in the paper cited above [13] the author examines the solutions given by the Dirac equation in two-
space-dimensions and finds the same strange behavior of the ground state, which is a H# state, w.r.t. the 
coupling constant. 
 
In fact, we think this result is obtained in a context of an ill-defined system, uniquely on a pure 
mathematical basis. From a physical point of view, we can see the coupling constant α is actually 
entangled with several fundamental constants, in particular the Planck constant, the velocity of the light 
and the elementary electric charge. So, modifying α without much precaution can certainly lead to 
paradoxical physical results.  
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Another example, extracted from [11], of this kind of problem concerning a physical constant, in a case 
where the constraints are simpler: the non-relativistic limit of a relativistic theory can be obtained if one 
lets c tend to infinity, and thus the relativistic coefficient γ becomes 1 fοr any speed v. But if doing this 
on the Dirac operator in an electro-magnetic field, one has to proceed carefully because of terms as such 
as mc2 which would tend to infinity, and as the term (e/c)A that would turn off the vector potential A if 
c tends to infinity. Then the author is led to develop specific techniques and to define some concepts 
needed on account of the nature of the so-called c-dependence of the Dirac operators. 
 
II. DDL (Deep Dirac Levels). The deep orbits obtained as solutions of the relativistic quantum 
equations. 
 
In [16], Maly and Va’vra publish their first article where they define the concept of Deep Dirac Levels 
(DDL) for the electronic orbits of the Hydrogen-like atoms. Here we consider only hydrogen atoms. 
In fact, they use two methods for obtaining these deep orbit levels: the former by means of the 
relativistic Schrödinger equation, and the latter by the Dirac equation. For both equations, they follow 
the solution method indicated in [6]. We give a quick outline of the solution process, explicitly handled 
in the appendices, and we discuss the solutions. We emphasize the use of the Dirac equation. 
 
-1. Solutions obtained by [16] with the relativistic Schrödinger equation 

This equation has been written above in section I.2. After separation of the radial equation, one 
introduces an ansatz R(ρ) = ρ se−ρ /2L(ρ)  into the radial equation, where R represents the radial 
wavefunction, L(ρ) is a series of powers of ρ; s is a real parameter and ρ is a real numerical parameter, 
without physical dimension but proportional to the radius r in spherical coordinates. As usual, new 
parameters are defined by combining the initial physical parameters of the radial equation, in order to 
obtain a pure numerical 2d order differential equation in L(ρ).  
 
One shows that the eigenvalue energy E of the Hamiltonian is defined by the following expression:
 E = mc2[1+(γ2/λ2)]-1/2  where λ is a numerical parameter of the equation and γ = Zα, α being the 
coupling constant. It is in fact the Sommerfeld relation. From the differential equation in ρ, we have two 
conditions to satisfy: 

 s(s+1)+γ2− l(l+1) = 0,  when introducing ρ = 0 in the equation, where l is the angular momentum 
quantum number, and 
 λ = n' + s + 1, for obtaining the convergence of the series L(ρ), where n' is an integer number 
with n' ≥ 0. 
 
The first condition, a quadratic equation, has two roots:  s = -½ ± [(l+½)2 - γ2 ] ½ . It is the "crossroad" 
condition indicated at the beginning of this paper. Indeed, when taking the positive sign in the 
expression of s, we obtain the usual solution for the electronic energy levels. This choice is taken 
because with the negative sign we have s < 0 for any l > 0 and thus the radial wavefunction R tends to 
infinity when ρ tends to 0 because of the exponential term ρs.  Note that for l = 0, we also have s < 0, 
even when taking the positive sign. But in this case, for small Z and as γ ≈ Z/137, γ2 <<1 and s is close 
to zero. Moreover, considering that the nucleus has a size a ≠ 0, the potential has no singular point near 
0 and is finite everywhere. Then, one can show [6] that the solution R is finite at r = ρ = 0 and 
approaches that solution with a singular-point-Coulomb potential when a tends to 0. 
 

Nevertheless, as noted in [16] for heavy atoms, the value of γ2 becomes great enough that s (a negative 
value) has a non-negligible absolute value for l = 0. For example, in the Cs atom, Z = 55 and then s ≈ - 
0.2. One can observe that for an even-higher-Z hydrogen-like atom, i.e. Fr with Z = 87, we have s with 
an imaginary part; but this fact goes beyond the subject of our paper. As we consider only the H atom, it 
is sufficient to let Z = 1. Anyway, at this point we can consider there is no serious reason for 
systematically eliminating the so-called "anomalous" solutions obtained with a negative sign in the root 



8 

s. The argument concerning the physical reality of the finite (≠0) size of the nucleus can be applied in 
this case too. 
 
The energy levels corresponding to the "anomalous" solutions are provided by the following expression: 

 E =mc2[1+ α 2

(n '+ 12−[(l + 12)2 −α 2 ]1/2 )2
]−1/2     (2) 

where n' is the radial quantum number and l is the angular momentum quantum number. For hydrogen-
like atoms, α2 is simply replaced by Z2α2. As for the usual solutions, the authors define the total 
quantum number n = n'+l+1. Then they compute the new energy levels E (by using the formula in γ and 
λ) for all the possible combinations of the quantum numbers n = 1, 2, ... ; n' = 0,..., n-1; and  l = n - n' - 
1. Of course, the values represented by E are the total energy of the electronic orbitals. 
 
The corresponding binding energies, i.e. the values BE = E-mc2 are quoted in several tables T1, together 
with the energies of the regular solutions (positive sign in the expression of s) and with the non-
relativistic Schrödinger levels for comparison. The results for Z=1 are reproduced in Appendix 8. 
Each table is built-up for a different hydrogen-like atom of the class of the alkali metals. In fact, every 
anomalous solution is not a deep orbit: such a deep orbit appears only for n' = l, as emphasized by the 
authors and as we can see in the tables (where n = N, n’ = M, l = L).  
 
As we have an analytic expression of E, it is possible to find the "secret" of this discrimination. 
For doing this, we start from the formula E = mc2[1+(γ2/λ2)]-1/2  where λ = n' + s +1 and  
s = -½ - [(l+½)2 - α2 ] ½. For small Z (here Z = 1), we can first show that λ ~ n'- l+ α2/(2l+1). 
Then we can see that the condition n' = l drastically reduces the expression of λ:  λ ~ α2/(2l+1), and so  
λ << 1. Carrying this into the expression of E, we can next show that the total energy E ~ mc2α/(2l+1). 
As the fraction α/(2l+1) << 1, the binding energy |BE| is very high and that means the orbit is very deep. 
So for every l, |BE| > 507keV, which gives an orbit radius of order fm. There is an infinite series of 
these very deep energy levels. 
 
Concerning the energy levels corresponding to other combinations of the quantum numbers, the tables 
gives two kinds of results: values similar to the usual energy levels, and values annotated by the authors 
as "negative energy states, not observable", appearing for n' > l.  Finally, we can note that for n' = l = 0, 
for the relativistic Schrodinger case, the binding energy BE = -507keV, in agreement with the result 
found in [3] for the energy of the anomalous solution. Moreover the necessary condition, n' = l for the 
EDL orbits, explains the negative result of the same author concerning the "excited" states, because he 
considered only the case of null angular momentum.  
 
-2. Solutions obtained by means of the Dirac equation. 

-2.1. Determining the DDL solutions. 
The authors refer to and use the method developed in [6] that we indicate in the Appendix 6. Here is the 
expression of the anomalous solutions obtained from the regular solutions by changing the sign “plus” 
by a sign “minus” between n' and the square root, at the denominator of the internal fraction: 

     E =mc2[1+ α 2

(n '− (k2 −α 2 )( )
2 ]

−1/2                                                (3) 

E depends on two quantum numbers n' and k. The radial quantum number n' can take any positive 
values 0, 1, 2 … and k is related to the total angular momentum (now including the electron spin). It can 
take values ±1, ±2, … but not the value 0. Indeed, from the relation  given in 
Appendix 1.3, we can see that k cannot be null, but we can give also a more "physical" argument to 
understand this fact. In the radial equation, Appendix 1.5, the term in k/r plays the role of a repulsive 
angular momentum barrier that prevents the "fall to the center." It is like the "effective potential" 
l(l+1)/r2 appearing in the well-known non-relativistic radial Schrödinger equation. One also defines the 
main quantum number to be n = n'+|k|. 
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As was done for the relativistic Schrödinger equation, the authors built tables of the binding energies for 
combinations of the specific Dirac quantum numbers n' and k appearing in the expression of E, plus the 
main (or total) quantum number n and the orbital quantum number l. This latter is connected to k by the 
relation l = k -1, if k > 0, else l = -k. These tables, T2, also concern the hydrogen-like atoms of the alkali 
class. Here we consider only the hydrogen tables and k > 0. [n = N, n’ = M, k = K, and l = L2= - k (used 
with k < 0) for the Dirac levels] 
 
Here again, every energy level is not a DDL, but only those computed for n’(=M) = k. The mathematical 
explanation is similar as the case of the Schrödinger equation: we can show that the energy values ED of 
the DDL orbit satisfy ED ~ mc2α/2k. So, we can see that there is an infinite series of DDL solutions. 
Now we consider the expression ES ~ mc2α/(2l+1) obtained in the Schrödinger case. Here, the indices D 
and S refer to the Dirac equation and Schrödinger equation respectively. While comparing the 
expressions of ED and ES, we can verify the slight shift between the values of ED and ES, i.e. ED>ES and 
thus BED <BES, for the equivalent levels determined by n' and thus by k =l. For example, for n' = 1, the 
tables displays BES  -509.8 keV while BED  -509.1 keV. Note that the first deep orbit energy BES ~ -507 
KeV, for n' = 0, has no equivalent in the "Dirac table" of the same atom, because the Dirac number k 
cannot be null. 
 
It is quite normal to have differences between these values, because the Dirac Hamiltonian includes the 
additional corrective term of spin-orbit energy (Appendix 5), associated with the spin precession, and 
corresponds, for the regular solutions, to a smaller total spread in energy of fine structure levels [6] than 
for the Schrödinger solutions. In fact this corresponds to a slightly bigger |TE| and thus implies a 
slightly smaller |BE|. Moreover we can think this energy shift is much more appreciable at the deep 
level.  
 
-2.2. Some particularities of the DDL solutions. 
In considering the approximate expression, ED ~ mc2α/2|k|, for the total DDL energy deduced from the 
special condition n' = k, we can see that ED decreases when k increases. Since the total quantum number 
is defined by n = n'+|k|, and k >0, we can write ED ~ mc2α/n. Thus when n increases, the binding energy 
mc2[1- α/n] increases. So, the variation of the binding energy as a function of the principal quantum 
number n is the inverse of the case for the regular solutions. This fact raises a question: what is the 
variation of the mean orbit radius as a function of the quantum number n (or k)? It seems this question 
has never been mentioned, much less addressed. We think the most logical answer, based on the results 
of [16], should be the following: when n increases, the binding energy increases. That is possible only if 
the electron moves nearer to the nucleus, so the mean orbit radius decreases. A coarse computation 
seems to lead to the same hypothesis and a remark in ([2], p.61), the next paper of the authors cited 
here, corroborates this hypothesis. Under these conditions, we assume that the mean radius corresponds 
to a charge-accumulation area in orbitals close-about the charge volume of the nucleus. Of course, only 
a computation based on the variations of the quantum electron density could determine the correct 
result. This can be the object of a further paper.  
 
Another question leading to further study is: how to physically interpret the fact that DDL orbits appear 
only when the quantum number n' and k are equal? 
 
-3. The other energy values provided by the algebraic expression E. 

Now we look at the energy values that do not define DDL orbits. To simplify, we consider k >0. 
 
-3.1. Negative energies and masses 
Maly and Va’vra [16] indicate that some results in the tables cannot be observed as energy levels in 
atoms with electrons, because they correspond to "negative energy" states. This situation happens with  
k > n' for the Dirac case, and for l > n' for the Schrödinger case. We can easily deduce this condition 
from the expression of E.  
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Consider only the Dirac case and the process used to obtain the energy expression, as indicated in the 
Appendix 1.7. By the end of the process, we have the relation (7.7):  

where β > 0 and s = - √(k2 − γ2) = - √(k2 − α2), since here (H atom) we have Z = 1. Therefore √(k2 − α2) 
= k √(1- α2/k2) and as α2 << 1, k √(1- α2/k2) ~ k (1- α2/2k2), thus s + n' ~ n' - k + (α2/2k). From (7.7), we 
can see that E has the sign of the expression s + n'. If k > n', then s + n' ≤ -1+ (α2/2k), and as the 
additive term at right is <<1, we have effectively E < 0. There is a similar verification for the similar 
relativistic-Schrödinger case. 
 
-3.2. Pseudo-regular energy levels 
Here again, we consider only the Dirac case, the Schrödinger case being similar. We can show that, for 
any couple (n',k) such that k ≤ n' and n' ≠ k, E is not a DDL energy. E is almost equal to the energy of a 
regular level corresponding to the principal quantum number N = n'-k. Moreover, for any N given, there 
is only a very slight value shift that depends on the chosen couple (n',k)  verifying n'- k = N. This can be 
observed on the values displayed on the tables of [16]. More precisely, we consider the denominator D 
of the fraction inside the expression E(n',k). By using the same approximation as above in 3.1., we can 
write D = [n' -√(k2−α2)]2  ~ [n'- k+(α2/2k)]2 . If we consider the expression ER(nR',kR) of a “regular” 
solution, its inside denominator DR is very similar to D, with only a changing of sign, i.e. 
DR = [nR' +√(kR

2 − α2)]2 ~ [nR' + kR - (α2/2kR)]2 . Now we can see that the value of the energy level 
E(n',k) is very near any regular level with principal quantum number N = nR' + kR = n' - k 

     
Moreover, on account of the term α2/2k inside D, we can see that for the same value of N = n'-k, when k 
increases then |E(n’,k)| decreases and thus the corresponding binding energy |BE'(N,k)| increases. But 
the variation of E as function of the principal quantum number N = n'-k follows the classical behavior of 
the regular solutions, i.e. when N increases, then the total energy E(N,k) increases and the shifts induced 
by k are very small in comparison with the "principal" variation with N. Under these conditions, we can 
think the mean orbit radius increases with N, as for the "standard" regular solutions. Nevertheless, a 
question remains: the wavefunctions of the solutions E(n’,k) being determined from a parameter s of 
negative sign, are not the same as the ones of the "normal" regular solutions, especially near the origin. 
So, we have yet to physically interpret the existence of these pseudo-regular solutions of the Dirac 
equation. This question could be another object of further study. 
 
 
-4. The deep orbits obtained by considering a corrected potential near the nucleus 

-4.1. DDL orbits with a finite potential inside the nucleus. 
After their work [16], where the authors defined the DDLs, they continued their study with a second 
paper [2] where, in particular, they estimate the size of the DDL atoms. For doing this, they start with 
another method ([17], p.195) for the Dirac equation solution. This method, using similar ansätze, 
transforms the system of coupled first order differential equations on the radial functions into a 2d order 
differential equation, a Kummer's equation. The general solutions of this equation take the form of 
confluent hyper-geometrical series, requiring suitable convergence conditions. Of course, there is 
always the same "crossroad" parameter s that determines the DDL solutions when s<0. In order to make 
accurate calculations of the size of the DDL atoms, the authors consider that the nucleus has finite 
dimension, taking into account a finite specific potential inside the nucleus, and they look for the 
wavefunctions inside the nucleus. For doing this, they choose a potential derived (by adding a constant) 
from the Smith-Johnson potential, corresponding to a uniformly distributed spherical charge: 
                (4) 

The radial equations with this potential are solved with a couple of functions gi and fi in the following 
form:  gi = A rSi

  
-

 
1 G2(r),  fi = iB rSi

  
-

 
1 F2(r), where F2(r) and G2(r) have the form of power series 

 G2 = a1 r + a2 r2 + …  and F2 = b1 r + b2 r2 + … 
Recurrent formulas lead to some coefficients. For example, for k >0, k being the Dirac angular quantum 

2β (s+ n’) = γ (β1 −β2 ) =
2Eγ
c

V (r) = −[ 32 −
1
2 (

r2
R02
)] Ze2R0
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number, one has b1 ≠ 0,  Si  = k− 1 ≥ 0,   a1 = 0. Only the terms of degrees n ≤ 5 are kept in G2 and F2. 
Then they show that it is possible to numerically normalize and to "connect" both solutions (outside and 
inside the nucleus) at a conventional value R0 of the nucleus, not indicated in the paper.  
 
Now, if we considerer a solution (gi, fi) “inside the nucleus”, the term of minimal degree of the 
polynomial gi is k and the one of fi is k−1. So, in the formula used to verify the orthogonality criterion 
(Part I, section 3),  when r −> 0,  the expression to be considered is a polynomial P 
having a term of minimal degree 2k−1 and thus, for any k >0, P does not contain a constant term. We 
can deduce that the corresponding global solution satisfies the orthogonality condition.  
Next, if we look at the boundary condition, expressed by gi −> 0 and  fi  −> 0  when r −> 0, we can see 
this property is verified for any k > 1. 
    
From the couple of radial functions f and g found outside the nucleus, Maly and Va'vra [2] compute the 
electron density (Eld) outside the nucleus by the formula Eld = 4π r2(|f|2+|g|2) and they deduce the mean 
orbit radius , where A0 is a normalization constant. They plot curves of Eld for 
various atoms, for regular and for DDL orbits. In particular, in their Fig. 2, they give the curves of Eld 
for DDL orbits corresponding to the Dirac quantum number k = +1, for H and Li (as hydrogen-like) 
atoms.  
 
For H, the energy level is ~ -509.1 keV, while for Li (with one electron on DDL) it is ~ -505.4 keV. The 
authors say that the peak of Eld corresponds to the radius of the nucleus, that seems rather logical. By 
looking at the curve, we can see that the peak occurs for r ~1.3 fm. After this, the authors propose 
mechanisms of atomic transitions to the DDLs and they suggest chemical behaviors of the DDL atoms 
that, in fact, could behave almost as neutral particles. This would explain the difficulty in detecting 
them. Finally they report experimental results such as calorimetry and radiation detection. This is 
beyond of the scope of our present paper. 
 
-4.2. Techniques used when considering a finite potential inside the nucleus and criticism. 
When considering a finite potential inside the nucleus, there are three stages for finding the solution. 
First the solution is computed outside the nucleus, i.e. for the Coulomb potential, but with considering 
the radius r > R0 , where R0 is near the "charge radius" of the nucleus. For example, if we consider only 
the hydrogen atom, the charge radius is ~ 0.87 fm, and in [18] R0 is computed for a nucleus of mass 
number A by means of the empirical formula R0 = r0 A1/3 where r0 = 1.2 fm.   
 
Next, the solution is computed inside the nucleus, with a chosen potential what is an approximation 
physically suitable for the problem. For example, one can use, as in [18] [2], the Smith-Johnson 
potential, or simply a constant potential, or more complex ones. 
Finally, let gi(r) be the inside solution and go(r) be the outside one, both have to be correctly 
"connected" at r = R0. More precisely, if the initial equation(s) is (are) of differential order 2 as the 
Schrödinger equation, we have to satisfy the continuity condition for the functions gi(R0) = go(R0), and 
also for their first order derivative, i.e. gi'(R0) = go'(R0). In fact both conditions can be combined into a 
"matching" equation of the form gi'(R0)/gi(R0) = go'(R0)/go(R0). But for a differential order 1 equation 
such as the Dirac equation that leads to a combined system of two first order equations on two radial 
functions f(r) and g(r), we have only to satisfy the continuity condition. However, this involves four 
functions, i.e. gi(R0) = go(R0) and fi(R0) = fo(R0) that can be combined into a simple matching condition 
gi(R0)/fi(R0) = go(R0)/fo(R0). Of course, the normalization of the whole wavefunctions defined for r ∈ [0, 
+∞) has to be carried out after matching. 
 
Some purist criticisms concern the fact that, for some chosen potential inside the nucleus, e.g. a constant 
potential equal to the potential at R0, the whole potential V(r) as a function on [0, +∞) cannot have a 
defined derivative at r = R0 but has different left- and right-derivatives. That could entail a problem for 
the wavefunction at r = R0. Nevertheless, we can suppose that the wavefunction is in fact defined with 
an infinitesimal smoothing centered at R0. This introduces a negligible perturbation, but restores the 
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derivative at R0. 
 
An interesting criticism is found in [18] where the Dirac "anomalous" solution is not rejected, but is in a 
way combined with the regular one in a linear combination with coefficients to be computed to satisfy 
the continuity conditions at the matching radius. It seems from the result, that the anomalous solution is 
involved with a very small ratio, as a little perturbation. We observe that the authors use a solution 
method based on transforming the coupled Dirac radial equations into a Whittaker's (2d order) 
differential equation. This method and the similar one using Kummer's equation (see ref. in appendix 7), 
although rather technical, are often used since they correspond to a "standard" process leading to the 
solutions.  These are confluent hypergeometric series (appendix 7) as factors of the same exponential 
functions corresponding to the ansätze taken in the solution indicated in appendix 7, in particular the 
function ρs. Of course, with the finite size of the nucleus, there is no longer any divergence at ρ = 0 for 
this exponential. Nevertheless, if considering both the regular and the anomalous solutions at the same 
time, a complication appears for the convergence of the series when ρ −> +∞: the convergence 
condition depends on the sign of the crossroad parameter s. To resolve this difficulty, the authors have 
to combine both kinds of series in order for the divergences be exactly balanced, when using asymptotic 
forms of the series. We have to note that the computed coefficients contain the energy parameter E, 
because of the initial dimensionless transformation of the Dirac radial equations. With these conditions, 
the authors have to unify the parameter E when they verify the continuity conditions at r = R0. This 
leads [19, p.2180] to an equation with a single unknown E (in fact they use a dimensionless unknown  
E' = E/mc2). Here we can see that, if using the solution method proposed in [6] or in [22], then the 
convergence of the series involved by the ansätze is independent of the crossroad parameter s and that 
greatly simplifies the problem. 
 
The criticism of the authors [18], about the method used in [2], concerns the lack of dependence on the 
potential inside the nucleus and on the boundary conditions at the nuclear radius. We can understand 
this criticism insofar as the method of the authors has for a goal to increase the precision of the atomic 
electron energy levels values. In fact, matching in a simple way the wavefunction outside the nucleus 
with a solution inside the nucleus is an approximation that only allows removal of the singularity of the 
wavefunction at the origin. We think that the form of the nuclear potential can have a significant effect 
on the energy levels, particularly for deep orbits near the nucleus. So, in order to improve the precision 
of the DDL levels, we suggest the following method: to start from a corrected global potential built by 
connecting in a smooth way the Coulomb potential outside the nucleus with a chosen nuclear potential 
[19], then to numerically solve the radial equations with this global potential and to compute the 
corresponding DDL energies. This could be the object of further work. 
 
Note finally a method indicated in [11] [20], which allows one to “regularize” the Coulomb potential 
without the arbitrariness of the cut-off near the nucleus (in particular with the choice of a radius R0). 
This method consists of taking into account the “anomalous” magnetic moment of the electron in the 
unmodified Coulomb potential, and it can be generalized to other potentials with singularity at the 
origin. The author shows that, doing this, the modified radial Dirac operator written in matrix form has 
an additional term not diagonal in natural units, where µa = 0.00058 determines the anomalous 

magnetic moment of the electron. This matrix of the modified radial Dirac operator is the following: 
             

                (5) 
We cite the author: « this term acts as a repulsive interaction that forces the wavefunction away from 
the singularity ». In fact, the factor is extremely small, but it becomes dominant against the attractive 
diagonal Coulomb term α/r for an electron near the origin. Here, the term “regularize” means that the 
modified Dirac operator has all the “good” properties for providing counter arguments to the criticism 
analyzed in the paragraphs 1., 2., and 3.; of the discussion I; and also to the criticism of [18]. 
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Conclusion, open questions, and future work 
 
In the first part of this paper, we discussed the principal arguments against the deep orbits (DDL) for H 
atom and we showed how it is possible to resolve the questions raised. Next we analyzed the 
computational results of [2] [16] that produced an infinite set of the anomalous solutions, usually 
rejected, of the relativistic Schrödinger equation and the Dirac equations. We observed that only a 
subset of these solutions, but an infinite one, corresponds to deep orbits: the ones satisfying the equality 
between the quantum numbers that determine the values of energy levels, i.e. the radial number n' and 
the angular number (l for the Schrödinger equation and k for the Dirac equation). We saw that the 
electron binding energy on these DDL orbits, of order 509-511 keV, increases when the angular 
quantum number (or the radial number, since it has the same value) increases. This result seems to 
indicate that the mean radius of the DDL orbits decreases when n' increases. Though it is not explicitly 
said by the authors, some remarks in their second paper clearly corroborates this hypothesis, and it 
seems there is an accumulation zone of the orbits in the neighborhood of the nucleus, near a radius of 
order 1 fm. Of course only a precise quantum computation of the mean radius as function of n' could 
confirm this hypothesis. 
 
We also noted that another infinite subset of solutions, what we call "pseudo-regular" energy levels, 
give energy values very near the regular atomic-electron levels, while the corresponding wavefunctions 
are not the ones of the regular solutions. This result and the previous one about the quantum numbers, 
raise questions about their possible physical interpretation. Moreover, we think that the situation of the 
DDL orbits in an extreme field implies a big strengthening of the several "special" known effects that 
affect the regular orbits, such as the spin-orbit and spin-spin interactions, the zitterbewegung, and the 
Lamb shift. For example, the spin-spin interaction, responsible for the hyperfine structure, and the 
corresponding quantum number associated could play an important role in the determination of energy 
shifts. However, the deep levels are also predicted by the relativistic-Schrödinger (Klein-Gordon) 
equation, which does not include spin effects; therefore, this contribution must be limited to the Dirac 
equations. While the relativistic-Schrödinger equation does not include spin effects and the predicted 
‘angular momentum’ quantum numbers are for quantities that are two orders-of-magnitude lower than 
the values associated with the Planck constant, we might suggest that there is a ‘hidden’ variable within 
quantum mechanics that may be associated with relativity. Perhaps there are possible new quantum 
numbers associated with known physical effects, such as relativistic and field-induced precession and 
nutation of the electron-spin vector.  
 
Finally, from the analysis of the work [2] on the DDL orbits obtained with a corrected potential near the 
nucleus and the questions raised about these solutions, we think that a more accurate estimation of the 
DDL orbit energies and radius should result from a numerical "direct" computation of the radial 
wavefunction with an improved potential from r = 0 to infinity. An alternative to this computation could 
be to take into account the anomalous magnetic moment of the electron with unmodified Coulomb 
potential, as mentioned just above. These questions will be the object of further work. 
 
Appendices: Some important points about the Dirac equation 
 
The Dirac equation is certainly a cornerstone of modern physics: reconciling quantum physics and 
special relativity with success, accounting for spin of particles, and having the historical source of the 
concept of anti-particle even before their actual discovery. As it is copiously handled in the literature, 
e.g. deeply in [20], here we recall some essential features that are necessary to keep in mind. We use a 
minimal formalism and we do not use tensor notation that would require explanations not useful for the 
subject of this paper. In the same manner, we do not call for advanced algebraic knowledge, such as the 
Clifford Algebra [21] often used in this field. Among the documents that we used, we can cite also, in a 
non-exhaustive way: [6], [22], [4], [23], [24], [25]. 
 



14 

1. Elements of genesis of the Dirac equation 

In order to obtain a quantum evolution equation of first order time derivative, and as quantization needs 
to replace the energy by the time derivative, Dirac linearized the classical relativistic energy-momentum 
relation before translating the physical quantities into quantum operators. So,  was 
replaced by , where α  denotes a formal vector constituted from three quantities 
α1, α2, α3, and β is not v/c, but a fourth quantity sometimes denoted as α4 or α0. But, of course, α and 
β have to be properly chosen in order for the linear expression of E to fulfill the prior quadratic 
expression. This condition implies simple algebraic relations between the linear coefficients, among 
which is an important anti-commutation property {αµ,αν} = αµ αν + αν αµ = 2 δµν  for µ,ν = 0,1,2,3. 
The relations needed for the linear equation imply that the four coefficients be at least 4x4 matrices and 
this dimension is in fact sufficient; moreover several solutions are possible. 
 
In standard representation, the Dirac matrices which are Hermitian operators (needed for quantization) 
are defined by: 

   for i = 1,2,3,  where the four components are 2x2 matrices and the σi are the well-

known Pauli matrices  , and 

  where the four components are 2x2 matrices. i.e. 1 is the 2x2 identity matrix I2. 

Usually the numerical indices 1,2,3 correspond respectively to the Cartesian coordinates x,y,z. 
Nevertheless, other representations [20] can be used, such as the Majorana or the Weyl (or chiral) 
representations. 
 
Next, the linear equation of the energy was quantized into the "free" Dirac equation, by using the usual 
correspondence principle:  

 i ∂tψ(t,x) =H0ψ(t,x) ,      (1.1) 

where H0 is the free Hamiltonian, representing the right side of the linear equation of the energy, in 
which the momentum p is represented by the spatial differential operator  ,  so H0 is the matrix-
valued differential expression  

   H0 = .      (1.2) 

The free Dirac operator H0 represents the energy of a free particle including the rest-mass energy mc2. 
The Dirac equation, in the form of a wave equation, can be written as 

                                                                (i∂t + icα .∇ − βmc2 )ψ(t,x) = 0          (1.3) 
By multiplying this equation on the left by ψ and its Hermitian adjoint equation on the right by ψ, then 
subtracting, one can obtain (see, e.g. in [6]) a conservation equation   in such a way that 
ρ = ψ ψ   and J = c ψαψ   are real quantities and ρ, being non-negative, can be interpreted as a 
position density probability. This result is essentially due to the fact the Dirac equation contains only a 
first order derivative in time. 
 
In order to match the dimension of the Dirac matrices, the wavefunction ψ has to be a vector-valued 
function having 4 complex components. The function ψ is called a spinor because it can describe the 
state of a particle with spin ½. Because of the structure of the Dirac matrices, whose 16 components are 
regrouped into four 2x2 matrices, one usually regroups the 4 components of the spinors into two halves, 

i.e. two 2-vectors represented by ψa, ψb. More explicitly 

 

and 

 2. Free-Particle Solution 

Solving the Dirac equation for a free particle highlights very particular features of the solutions, leading 
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to a historical prediction, before the actual discovery, about the existence of "anti-particles". On taking 
into account the fact the Dirac differential operator has to act on vector-valued functions of dimension 
4, the Dirac equation is equivalent to four simultaneous first-order partial differential equations. They 
are linear and homogeneous in the components of the spinor ψ that we regroup in the two vectors ψa 
and ψb. 
 
It is natural to try solutions in the forms of plane waves, i.e. for j = a,b, where the uj 
are two vectors of dimension two. These are eigenfunctions of the energy operator  and of the 
momentum operator , whose respective eigenvalues are obtained by applying these differential 
operators to ψ. So the eigenvalue for the energy is E =  and the one for the momentum is the vector  
p = . By developing the Dirac equation, we obtain the following coupled linear equations on the 
vectors uj  

       (2.1) 

where σ denotes the vector formed by the three Pauli matrices and σ . p is the formal scalar product, i.e 

σ . p =  σ1 p1 + σ2 p2 + σ3 p3. From the coupled equations on ua and ub, we can deduce the relation  

          (2.2) 
thus the values of the energy E and the momentum p satisfy the relativistic relation  
But for E, we have the choice between the positive square root E+  and the negative one E- . 
 
While solving the system of linear equations for the positive energy, we obtain two linear independent 

solutions by setting a vector ξ  with two possibilities  and . Then, for each value of p, 

we have two positive energy solutions that are orthogonal and can be normalized  

        (2.3) 

where N+ is a normalizing factor depending on E+. We follow the same process for the "negative" 
energy E- by taking the previous ansatz with the opposite sign for the exponent, i.e. i(-k.r + ωt), and we 
can obtain two negative energy solutions, orthogonal and normalized by a similar factor N-  
  

        (2.4) 

where N- is the factor obtained by replacing E+ by E- in N+. For both solutions u, the upper components 
dominate in the non-relativistic case, i.e. if |p| << mc, so one names these components the "great 
components." For the solutions v, it is the opposite situation, i.e. the lower components dominate. 
 
We can see that the spectrum of the free Dirac operator H0, i.e. the set of possible value of the energy 
E(p), is composed of two infinite intervals separated by a gap: (-∞  -mc2]∪[mc2  +∞). Now the existence 
of negative energies has to be interpreted. Paul Dirac suggested a "negative-energy sea" filled with 
electrons, the "Dirac sea", and it would be possible for high-energy photons to promote electrons out of 
the sea into positive energies where it would be observable; the "hole" left in the sea would be an 
observable, as a electron but with a positive charge. So he predicted the existence of the positron, the 
"anti-particle" of the electron, which was discovered later by Carl Anderson [26]. The concept of Dirac 
sea is no longer used, particularly in the context of the "single particle" interpretation of the Dirac 
equation, where it entails some difficulties. Instead and as the relativistic context needs to consider 
states with unspecified number of particles, QFT [7] [4] uses Fock spaces with “2d quantization”, i.e. 
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creation/annihilation operators, particles number operator, etc… But one can see a reminiscence of the 
Dirac sea in the QED concept of  “vacuum polarization.” 
 
Of course, a plane wave cannot represent a particle. To represent particles, we have to consider wave 
packets built-up as a linear superposition of plane waves, expressed in the form of a summation (by 
integral). 
 
3. Covariance of the Dirac equation. Spin 1/2 

As the Dirac equation was built for being compatible with relativistic effects, it has to be invariant 
under changes of Lorentz frames. Now we give some details concerning this question. First one can 
give the Dirac equation a more relativistic form, by multiplying the initial Dirac matrices by the matrix 
β, becoming γ0, and defining γi = β αi for i = 1,2,3. To avoid tensor notation, we use as in [20] the 
formal notation for bilinear form such as 
 <γ,x> := c γ0 t - γ .x  for any four-vector x in Minkowski space. Here, this form gives a 4x4 
matrix and γ .x is the formal scalar product of the spatial vector x with the vector γ  of matrix 
components γi for i = 1,2,3. Doing this, one can write the Dirac equation in a more symmetric form in 
space-time variables: 
   where  denotes the four-dimensional gradient operator, i.e. a four-
vector with differential operators as components: 

   . But beyond the notation, the more important point is 
that the Dirac equation for a free particle is invariant under the proper orthochronous Poincaré 
transformations of the space-time coordinates and so it is Lorentz-invariant. Note that the group of 
general Poincaré transformations is extended to translations in space-time. 
 
We only summarize the relativistic invariance for changes of inertial frames. The corresponding 
transformations are implemented as unitary operators in the Dirac Hilbert space and they have the 
following general structure: ψ(x) −> φ(x) = Mψ(Λ-1(x-a)), where Λ is the well-known matrix associated 
with Lorentz transformations, and M is a linear operator depending on Λ.  Here x is a 4-point in 
Minkowski space, x = (ct, x) and a is associated with a space-time translation. One can show that, when 
ψ(x) is a solution of the free Dirac equation, φ(x) is also a solution. 
 
As (Det Λ)2 = 1, we can have Det(Λ) = ±1. A transformation is proper when Det(Λ) = +1, i.e. it 
conserves the direction of the three-space axis of the frame. Moreover the "pure temporal" component 
Λ0

0 always satisfies (Λ0
0)2 ≥ 1, but the transformation is orthochronous only for Λ0

0 ≥ 1 and, in this 
case, it conserves the direction of the time axis. For example, the mirror inversion P is improper, but 
orthochronous, while the time reversal T is also improper, but it is not orthochronous. One can show 
any proper orthochronous (p.o.) Lorentz transformation is continuously connected to the Identity 
transformation (which is of course p.o.). This means it can be formed by consecutive infinitesimal 
transformations starting from the Identity. Moreover, there are two particular classes of p.o. 
transformations, boosts and rotations, and any Lorentz transformation can be written in a unique way as 
the composition of a boost and a rotation. 
 
Now we note an interesting result justifying the name "spinor": 
 Consider a rotation of angle φ about e.g. the axis of the coordinate x3. One can show, from the 
corresponding Lorentz transformation Λ and the operator-associated M, that such a rotation corresponds 

to application of the matrix  to the spinor ψ .  

As = I2 cos (φ/2) + σ3 i sin (φ/2), a rotation of angle φ = 2π  gives M[2π] = - I4, so ψ  is 
transformed into -ψ ,  and we need a rotation of φ = 4π  to obtain the identity transformation. So we 
recognize that a rotation acts on the spinor in the same way as it does on a particle of spin ½. From this, 
one can see the explanation of spin as a consequence of the union of special relativity and quantum 
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mechanics. 
 
One can find explicit and concise algebraic computations concerning these questions in [4], where the 
author starts from the matrices γ  in the Weyl representation, uses tensor representations and elements of 
Clifford Algebra [27]. We cannot resist showing the very elegant tensor form of the free Dirac equation: 
        where (γ0)2 = 1, (γi)2 = -1 for i≠ 0, and γµγυ= −γυγμ if µ ≠ ν 

Finally, concerning discrete transformations, we can note that the CPT transformation, a combination of 
the Charge Conjugation, Parity and Time Reversal transformations has for net effect on a free electron 
wavefunction to convert it into the positron wavefunction. This CPT transformation is of a capital 
importance in Quantum Field Theory [7] because it reverses the up and down two-component spinors in 
the Dirac wavefunction in the same way as the matrix γ5= iγ0γ1γ2γ3. 
 

4. The Dirac equation for an electron in a Coulomb central field.  The spin-orbit operator K 
associated with spin precession 

We consider an electron subjected to an external electromagnetic field, in the form of the static 
Coulomb potential generated by a proton, and we consider only the bound states of the electron. Then 
the vector potential A can be set to 0, and the scalar potential φ is spherically symmetric. Now we have 
to add a potential energy V = eφ to the free Hamiltonian H0. Of course, as H0 is a 4x4 matrix, we add 
VI4 to H0 to form the "total" Hamiltonian H = H0 + VI4 representing the total energy of the electron in 
the Coulomb central field, where . 
 
Remembering the classical results for angular momentum, the orbital angular momentum L = x×p 
commutes with any spherically symmetric function; but, it is not a constant of motion in the Coulomb 
central field, because it does not commute with H. One has to add the operator S = ¼ α×α ,  where 
"×" is the formal cross (or vector) product applied to the vector α  having the three 4x4 matrices 
α1, α2, α3 for components. Then the total angular moment J = L + S is a constant of motion. Of course, 
in this addition, the identity matrix I4 as factor of J and L is understood to simplify the notation. S is the 
spin operator of the electron, represented by a vector of three components Si for i = 1,2,3 which are 4x4 

matrices, and in the standard representation we have , where the σi are the usual Pauli 

matrices. We can see that S is a straightforward extension of the usual spin operator  of the non-
relativistic quantum mechanics. 
 
Based on the spherical symmetry of the Coulomb field, one usually uses spherical coordinates to 
represent the Dirac operator H. Under these conditions, one can show that the spatial term α .p of H0 is 
transformed into  

,     (4.1)  
where pr is the "radial" momentum given by   

    ,       (4.2) 
and K is the operator defined by the formula  

, where Σ  =  =  .       (4.3) 

Here x represents the vector of the Cartesian coordinates and r = |x| its norm. The second expression of 
the radial momentum is its formulation as differential operator in spherical coordinates. Moreover, by 
substituting the expression of α .p in H, the "spherical" Hamiltonian now reads: 

              (4.4) 
 
We can see that K is related to the spin-orbit term (see below in 5. the relativistic-correction terms). 
Moreover one can show that K commutes with the Hamiltonian and that it is related to the total angular 
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momentum J by the relation . This expression is obtained by starting from the square 
of the definition of K. As J2 has eigenvalues , where j can take values 1/2, 3/2, 5/2, ... the 
Dirac operator defines a specific quantum number k for the eigenvalues of the operator K, taking values 
±1, ±2, ... In fact k = −/+ (j ± ½), but it cannot be equal to 0 because of the previous relation on the 
square of K. Note also that if the quantum number l of L is j-½ , then the spin (of magnitude ½) and the 
orbital angular momentum are parallel, else they are anti-parallel. We can say the quantum number k is 
associated with the spin-orbit interaction. The physical effect of this interaction is the precession of the 
electron spin [6, p.433] [28] 
 
 

5. The relativistic correction terms involved by the Dirac operator. Fine structure. 

It is interesting to see what terms are added by the Dirac equation to a non-relativistic Hamiltonian for 
the electron in a central potential, such as the classical Schrödinger Hamiltonian. For doing this, one can 
look for a non-relativistic limit of the Dirac equation and then deduce the relativistic perturbations 
involved in the Dirac operator. This leads first, for the first order correction in v/c, to the 2-components 
Pauli equation. Next, various and complex methods can be used, such as the Foldy-Wouthyusen 
transformation [29], to obtain relativistic corrective terms of higher orders in powers of v/c.  
Supersymmetry techniques can also be used [11][20]. Then one obtains a Hamiltonian H’ with 
corrections at order (v/c)2 having the following form. The correction includes three relativistic terms 
that we have intentionally separated by spaces: 

                                              (5.1) 
 -In this expression, we first recognize the rest mass energy added to the non-relativistic 
Hamiltonian, i.e. the non-relativistic kinetic energy plus the potential energy. 
 -The next (second) term corresponds to a relativistic kinetic energy correction. It can be obtained 
by expanding  where E is the relativistic energy defined (see above) by  
 -The third term corresponds to the spin-orbit energy, interaction energy between the spin σ and 
the orbital movement L of the electron. One can physically explain this interaction by the fact that, even 
in a "pure" electrostatic field, the electron moving in this electric field can also "see" a magnetic field. 
As the electron has a magnetic moment due to its spin, the magnetic field causes a spin precession 
(Larmor precession), but this would give twice the spin-orbit term. In fact it is half compensated by an 
extra relativistic effect on the accelerated frame of the electron, causing an additional spin precession 
with opposite sign, the Thomas precession (for a particularly simple derivation of the Thomas 
precession, see [30]). We note that for this correction, the electron is assumed to be only slightly 
relativistic, so the angular velocity ωT of the Thomas precession is computed by making a first-order 
approximation to the relativistic coefficient γ = 1/√(1-β2) ≈ 1+ ½ β2. Then one usually takes for a 
velocity v, ωT ≈ (1/2c2)v̇×v, while Larmor precession is ωL =  − (1/c2) v̇×v = −2 ωT. 
 -Finally, the fourth term, called Darwin term, is another relativistic correction of the potential 
energy, but it does not involve angular momentum. This term begins at the non-relativistic limit where 
the electron is not viewed as a point charge but as a distribution of charge and current in a domain of 
linear dimension . Physically, it is generally related to the Zitterbewegung, a rapid quantum 
oscillations of the electron blurring the electrostatic interaction with the nucleus, which affects only the 
s-orbits. Moreover, there is an apparent paradox concerning the spectrum of the standard velocity 
operator for the position operator, which would consist of ±c. This paradox can be removed by 
projecting the velocity operator to the particle and the anti-particle sub-spaces of the Hilbert space of 
the Dirac operator (see e.g. [31]). Quantum Electrodynamics can interpret the Zitterbewegung as 
quantum fluctuations that allow the creation of particle-antiparticle pairs yielding perturbations of the 
electric potential [25]. Sometimes one considers it is caused by interference between positive- and 
negative-energy components [20] [32]. Nevertheless, there are also alternative explanations, such as in 
[33]. 
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Note that the three relativistic corrective terms provide an explanation to the physical observation of the 
fine structure of the Hydrogen and alkali atoms [34]. In fact the physical effects are not all additive, so 
the global spin-orbit interaction lowers the effect of the relativistic kinetic energy correction and 
improves the precision of the corresponding energy w.r.t. measured values. That is an improvement in 
comparison with the Klein-Gordon equation, which includes also a term of relativistic mass correction 
and even a Zitterbewegung effect, but no spin-orbit interaction. Nevertheless, the Dirac equation does 
not account for still subtler spectroscopic observations. It is the case for the hyperfine structure, due to 
(nucleus) spin-(electron) spin interaction not included in the Dirac Hamiltonian, because the proton is 
represented only by its Coulomb potential and not by its intrinsic features. And also for the Lamb shift, 
explained in principle by QED effects such as self-energy and vacuum polarization. 
 
 
6. Separation of the radial equation 

As we consider the case of an electron in a Coulomb central potential, we first use the fact that the 
potential is time-invariant. So we can separate the time factor from the wavefunction and write 
  where we explicitly indicate that the eigenfunction ψ does depend on 
an eigenvalue E of the Hamiltonian H. This leads to the stationary equation  
 H ψ(E,x) = E ψ(E,x). Here, x represents the vector of the Cartesian spatial coordinates. 
 
Next, the stationary equation can be separated in spherical coordinates in a similar, but more complex, 
manner than in the case of the Schrödinger equation for at least two reasons: in the Dirac theory, the 
wavefunctions are 4-D, and the angular momenta are "interlaced" in the 4 components of the spinors.  
Here we give only an outline of the required process, which is rather technical and cumbersome. 
So, in (Appendix 4.) the separation was prepared by defining the radial momentum and the operator K.  
The following transformed Hamiltonian has been obtained: 

       (6.1) 

As in the classical example of the Schrödinger equation, the separation needs two stages: 
 -a. first, solve the problem of eigenvalues of the angular operators involved in the equation 
 -b. next, look for eigenfunction solutions (of the first problem) satisfying the equation. 
 
 -a. One may consider the "usual" angular operators J2, Jz and the new operator K acting only on 
the angular coordinates, so the eigenvalue problem is independent of r. Moreover they commute 
between them. So there is a system of common orthogonal eigenvectors belonging to the Hilbert space 
L2(S2)4 of the square integrable functions on the sphere S2, for the operators J2, Jz and K, with respective 
associated discrete eigenvalues. This allows one to define couples of 2-D spherical spinors Ω(θ,φ) 
similar to the couples of half-spinors defined at the end of (Appendix 1) and each can be expressed by 
means of the classical spherical harmonics, which are eigenfunctions of L2, Lz, considered as functions 
of the spherical angles θ and φ. The 2-D spinors Ω(θ,φ) provide eigenfunctions of K, the only angular 
operator occurring in the spherical hamiltonian Hsph , with associated eigenvalue k. 
 -b. Now one considers such "angular" eigenfunctions Ω(θ,φ) to form the eigenfunctions ψ 
common to Hsph and K. 
 
A wavefunction ψ solution of the Dirac equation can be expressed by a 2D vector of two 2D 
wavefunctions ψ1, ψ2 of the form Χ(r) Ω(θ,φ), where Χ(r) is a scalar function. To simplify the reading, 
we do not write the quantum numbers in indices (usually k, m or k, j±1/2). While substituting into the 
eigenvalue radial equation derived from Hsph ψ(E,x) = E ψ(E,x), the operator K is replaced by its 
eigenvalue represented by the quantum number k. We note that, while decomposing the Hamiltonian 
into two halves, some simplifications arise: 
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Next the pseudo-vector nature of σ .x allows us to simplify its application on the spherical spinors, as 
application of a constant matrix. 
 
A very explicit and detailed process of separation of the radial equation can be found in [22]. From 
here, and also in the next section (Appendix 7), we follow the procedure indicated in [6] to obtain and 
to solve the system of radial equations, because it is technically simple and we can easily see what is 
done. The radial part Χ(r) of the wavefunction ψ(x) solution of the Dirac equation, has two components 
F(r)/r, G(r)/r depending on the radius r and associated with a couple of spherical spinors. Finally, one 
obtains a system of coupled first order differential equations on the radial functions F and G, valid for 
any electric central potential with spherical symmetry. 

      (6.2) 

Because of the definition of ψ(x) in term of the functions F and G, the required normalization condition 
on ψ(x) is equivalent to the condition ∫R+ (F2 + G2) dr  = 1 
 
Different processing of the spherical spinors leads to a different, but very similar, system of coupled 
equations. In fact, one always recognizes all the same terms, such as (E - mc2 – V), (E + mc2 – V), the 
derivatives of the radial functions, kG/r , etc…, but the signs of the coefficients can change. 
 
7. Equation solution 

When considering a Coulomb potential and hydrogen-like atoms, the Coulomb potential energy is equal 
to V(r) = -Z e2 /r and, in this case, analytical solutions can be obtained. As usual, one defines some 
parameters that allow the introduction of a dimensionless radius variable and a simplified writing as 
pure numerical equations (we use identifiers different from those in [6] to avoid confusion with the 
matrices αi and the coupling constant α used above): 

   (7.1) 

The first three parameters have a physical dimension [L]-1, the last two are dimensionless, and γ simply 
represents Zα (α being the coupling constant). 
 
An ansatz is defined in two stages:  
 - First one sets F(ρ) = f(ρ) e-ρ ,  G(ρ) = g(ρ) e-ρ. Then the equations become 

 g' − g + k g/ρ - (β2/β - γ/ρ) f  = 0     (7.2a) 
 f' − f  − k f/ρ − (β1/β + γ/ρ) g  = 0     (7.2b) 

 - Next one looks for solutions in the form of power series, where an is the coefficient of the term 
containing ρn:  f = ρs (a0 + a1 ρ + ... ) ,  g = ρs (b0 + b1 ρ +  ... ) with a0 and b0 ≠ 0. While substituting f 
and g into the coupled equations and after equating the coefficients of ρs+n-1, one obtains two crossed 
recurrence relations between the coefficients of the series.  

     (7.3) 

In particular, the relations between a0 and b0 are the following, for n = 0 

       (7.4) 

As the determinant of this linear equation system has to be 0, this gives the following condition on s  

 s = ± √ (k2 − γ2)       (7.5) 
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Here the choice of the sign plus determines the "regular" solutions, whereas the minus sign leads to the 
"anomalous" solutions, which are usually rejected. One can obtain a relation between an and bn for any 
n>0 by multiplying the first of equations (7.4) by β, and the second by β2

 

             (7.6) 

One can deduce by simple manipulations from the relations (7.4), that both series f and g diverge unless, 
for some integer n', the coefficients an and bn vanish for all n > n'. 
In these conditions, both equations of (7.4) give the same relation between an' and bn' , i.e. β2 an' = −βbn'. 
 
Next, by using the relation (7.5) and the definitions of the parameters β, β1 and β2, we obtain the relation 

  ,       (7.7) 

where we can remark that the energy E has the sign of the term (s + n'). Thus, for s = +√ (k2 − γ2) we 
have E > 0, but if taking s = −√ (k2 − γ2), then E > 0 iff n' > √ (k2 − γ2). 
From the previous relation, one can obtain the following expression of the energy as functions of the 
quantum numbers k and n': 

 E =mc2[1+ α 2

(n '± (k2 − Z 2α 2 )( )
2 ]

−1/2

        

(7.8) 

where α is the coupling constant. The number n' is called the "radial" quantum number and the number 
n = n' + |k| is the total quantum number. The specific Dirac quantum number k, related to the total 
angular momentum and corresponding to the physical effect of the spin precession is an important 
element. It could be called the "angular" quantum number, but it is often not named. 
 
Usually, the regular solutions for the energy level are obtained by taking the positive root for the 
parameter s in the above expression of E, i.e. taking the positive sign between n' and the square root, at 
the denominator of the internal fraction. The choice of s > 0 is made in order to satisfy the regularity 
conditions at the origin for F and G, i.e. F(0) = G(0) = 0. 
 
There exist other methods of processing of the initial system of 1st order differential equations to obtain 
the expression of the energy levels E. For example, eliminating one of the two functions of this initial 
system can lead to a 2nd order differential equation on the remaining function, such as a Kummer's 
equation [35]. The solution of this equation is a confluent hypergeometric series 1F1, the coefficients of 
which are determined to obtain their convergence by reducing them to polynomials ([36], p.7). This 
method is similar to the one used to solve the Schrödinger equation for the H atom. Other methods can 
lead to a Whittaker’s equation [14] [37], a modified form of confluent hypergeometric equations [15]. 
 
8. Evaluated equation solution 

A computer program was written by Maly and Va’vra [16] that calculates atomic energy levels for 
Relativistic Schrodinger levels E1S(+), E2S(-) in Table Ia, Dirac levels ED1(+) and ED2(-) in Table IIa,  
and the non-relativistic Schrodinger levels E(N, Z) given by a simple Bohr formula. {Tables from [16] 
are reprinted here with permission. Copyright November 1993 by the American Nuclear Society, La 
Grange Park, Illinois.}  Note the lack of a 1s level in the deep levels of Table IIa. 
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