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Abstract  

The ‘relativistic” mass concept is rooted in the problematic longitudinal and transverse mass equations emerging from 

the Lorentz transformation, as presented by Einstein in his 1905 paper on Special Relativity. These equations, although 
actual outcomes of the Special Relativity, and verified in this paper through both simplified dimensional analyses and 

conservation of energy principle, had later been implicitly dropped and replaced by an ad-hoc relativistic mass equation, 

needed to maintain the consistency of the Special Relativity with the conservation of momentum law—although it 

results in its violation of the law of conservation of energy.  Maintaining the latter law, results in the same transverse 

mass equation as obtained in Einstein’s said paper. The relativistic mass adopted in the literature is but an attempt to 

conceal contradictions in the Special Relativity, and a convenient means for arriving at the relativistic kinetic energy 

formula implying the desired mass-energy equivalence equation E = mc
2
. In this paper, the incoherence of the Special 

Relativity emerging from its established mass formulae is revealed through simplified physical demonstrations. 

Depending on the force definition and the “moving” mass equation used, four different formulae for the relativistic 

kinetic energy are obtained, all validated from the Special Relativity perspective, creating a detrimental incoherence in 

the theory. All these formulae are reduced to the classical kinetic energy equation for v << c (v = velocity, c = speed of 
light).  It is revealed that the energy equation E = mc

2
 is not a valid consequence of the Special Relativity. 

Keywords: Special Relativity, longitudinal mass, transverse mass, relativistic mass, relativistic momentum, Newton’s 

second law, relativistic kinetic energy, 2E mc=   

 

1. Introduction 

In his 1905 paper
1
 on the Special Relativity, 

Einstein predicted (from the Lorentz transformations 

for the space-time and electromagnetic field 

components) the longitudinal and transverse mass of 

moving electron as functions of its velocity, 

extended to ponderable material point, as measured 

in the “stationary” system. This was based on 

defining the force acting on the electron as being 

equal to mass acceleration× (Newton’s second 

law of motion). The longitudinal “moving” mass 

obtained as such along with the mentioned force 

definition, resulted in the relativistic kinetic energy 

of the material point moving in the longitudinal 

direction with a velocity v as being 

( ) 2( ) – 1 ,
k o

E v m cγ= ×  where 
o

m is the material 

point rest mass, c the speed of light, and 

1 22 2( ) (1 ) .v v cγ
−

= −  However, in this context, 

( )
o

mvγ ×  was not the predicted mass of the 

moving material point, which was rather 

3( ) .
o

v mγ ×  Thus, there was no such implication as 

to the mass-energy equivalence—which Einstein 

attempted to demonstrate in later works2 3—from the 

above kinetic energy equation. In addition, the 

transverse mass, as well as the longitudinal mass, 

doesn’t satisfy the conservation of momentum within 

the Special Relativity framework. Thus, the Special 

Relativity derived “directional” relative mass 

equations were later implicitly dropped, and replaced 

by the relativistic mass ( ) ,
o

v mγ × required for the 

conservation of momentum. If the relativistic mass 

was used in deriving the relativistic kinetic energy 
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equation, the equation ( ) 2( ) – 1
k o

E v m cγ= ×  

would be obtained if the force was rather defined as 

the momentum change rate ( )( )force d mv dt= —

equivalent to the former definition 

( )force m dv dt= ×  if the mass was invariant. In 

such a case, the kinetic energy equation becomes 

2 2– ,
k o

E mc m c= with the mass-energy 

equivalence implication. However, the relativistic 

mass being equal to ( )
o

mvγ ×  contradicts the 

actual Special Relativity prediction of the 

longitudinal (as well as transverse) mass based on 

the Lorentz transformation.  

It is customary to conclude the relativistic mass 

as being ( )
o

mvγ × from the conservation of 

momentum principle applied to colliding particles 

from the perspective of two inertial frames in relative 

motion.  In the present simplified approach, the 

transverse velocity of a body moving transversally 

relative to the “traveling” frame is reduced by a 

factor of ( )vγ  in the “stationary” frame, according 

to the relativistic velocity addition—or as a 

consequence of the time dilation—although there is 

no relative motion in the transverse direction 

between the frames. This will result in unjustified 

transverse momentum decrease (by a factor of  )γ

in the stationary frame relative to the moving one. 

Hence, by the means of the conservation of 

momentum law, the mass should be scaled up by a 

factor of ( )vγ  in the stationary frame to compensate 

for the momentum loss. The adopted relativistic 

mass equation ( )
o

vm mγ= × is therefore an ad-

hoc implemented to reconcile the conservation of 

momentum law that would otherwise be violated by 

the Special Relativity; it is not a natural prediction of 

the Special Relativity, and inconsistent with both the 

transverse and the longitudinal mass predicted by the 

Lorentz transformation. 

 

2. The “moving” mass in the Special 

Relativity 

Consider two inertial frames with coordinate 

systems ( , , , )K x y z t  and ( ), , ,k ξ η ζ τ  in relative 

motion with velocity .v  The frame K is considered 

to be the “stationary” one (i.e., the other frame is 

being observed from it). Assume the frames are 

under the influence of a uniform electromagnetic 

field. Let ( , , )X Y Z and ( , , )X Y Z′ ′ ′  be the electric 

field [vector] components as measured in the 

systems K  and ,K ′ respectively, while ( , , )L M N  

and ( , , )L M N′ ′ ′  are the corresponding magnetic 

field components. Let there be an electrically 

charged particle in motion within the field. Assume 

at an instant of time set as 0,t τ= =  the particle is 

at the K  system origin moving along with k  origin 

at the same relative velocity .v  At this initial time, 

the particle is at rest relative to the system .k  For an 

infinitesimal elapse of time, the motion of the 

particle can be described from the k  perspective by 

the following equations. 

 

2

2
,

o

d
m X

dt

ξ
ε ′=                                                 (1) 

 

2

2
,

o

d
m Y

dt

η
ε ′=                                                 (2) 

 

2

2
,

o

d
m Z

dt

ζ
ε ′=                                                  (3) 

where 
o

m and ε   are the rest mass and the charge of 

the particle, respectively.  

According to Einstein’s 1905 paper,
1
 with the 

help of the Lorentz transformation for the space-time  

coordinates,

2( );  ;  ;  ( ),x vt y z t vx cξ γ η ζ τ γ= − = = = −

and for the electromagnetic field components,   

;  ( );  

( ),

X X Y Y vN c

Z Z vM c

γ

γ

′ ′= = −
′ = +

 

Eqs. (1)–(3) are transformed in the system K  as  

 

2

2 3
,

o

d x
X

dt m

ε

γ
=                                                 

 

2

2
,

o

d y v
Y N

m cdt

ε

γ

  = −   
                                  

 

2

2
,

o

d z v
Z M

m cdt

ε

γ

  = +   
                                 

 

which can be written in the form 
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2
3

2
,

o

d x
m X X

dt
γ ε ε ′= =                                 (4) 

 

2
2

2
,

o

d y v
m Y N Y

cdt
γ εγ ε

  ′= − =   
               (5) 

 

2
2

2
.

o

d z v
m Z M Z

cdt
γ εγ ε

  ′= + =   
               (6) 

,  ,  X Yε ε′ ′ and Zε ′  are, as Einstein put it,  the 

components of the ponderomotive force acting upon 

the charged particle, or simply the “force acting upon 

a material ponderable point”. Therefore, maintaining 

the equation ,mass acceleration force× =  

Eqs.(4)–(6), in which the second derivative terms are 

the particle acceleration components as measured 

from the stationary system, imply the particle’s 

“traveling”  mass measured from the stationary 

system can be given by 

3 ;
l o

Longitudinal mass m mγ= =  

 ( )
3

2 21
l o

m m v c= −                               (7) 

2 
t o

Transverse mass m mγ= =  

 ( )2 21 .
t o

m m v c= −                                  (8) 

Equations (7) and (8) can be verified using 

simple dimensional analysis. In fact, a longitudinal 

force 
l
f  in the system k  acting upon a resting mass 

,
o

m has the dimensional form of 

2 ,mass length time×  

 

2
,o

l

m d
f

τ

×
≡    

 

which, by the help of the Special Relativity 

prediction of length contraction and time dilatation,  

is viewed from the system K  as  

 

2 2
.

( )

ll

l

m dm D
F

t

γ

γ τ

××
≡ ≡

×
  

 

Satisfying the requirement 
l l
f F= of  Eq. (4), we  

get 
3 ,

l o
m mγ=  verifying Eq. (7). 

Similarly, a transverse force 
t
f  in the system k  

acting upon a resting mass 
o

m has the dimensional 

form of 
2 ,mass length time×  

 

2
,o

t

m h
f

τ

×
≡    

 

which, by the aid of the Special Relativity prediction 

of time dilatation and invariant transverse length,  is 

viewed from the system K  as  

2 2
.

( )
t t

t

m h m h
F

t γ τ

× ×
≡ ≡

×
  

Satisfying the requirement 
t t
f F= of Eq. (5) or (6), 

we  get 
2 ,

t o
m mγ=  verifying Eq.(8). 

 

3.  Relativistic mass predicaments 

3.1 Relativistic mass by conservation of 

momentum 

Considering our systems ( , , , )K x y z t  and 

( ), , , ,k ξ η ζ τ  let there be a ponderable material 

point, or a body of mass ,
o

m traveling at velocity 

w
η

 in the transverse direction with respect to the 

system  .k  The body is at rest in the longitudinal 

direction relative to k ( 0).w w
ξ ζ
= =  Suppose the 

momentum 
o

p m w
η η
=  of the body is just 

sufficient to break a glass chip at rest in k  and 

intercepting the body’s  motion. According to the 

relativistic velocity addition, the transverse 

component 
y

W of the body’s velocity with respect to 

K  is given by .w
η
γ  If the mass was invariant, the 

body’s transverse momentum relative to K would be 

,
y o y o
P mW m w p

η η
γ γ= = = insufficient to 

break the chip, creating an absurdity. Thus the 

body’s momentum relative to K must be greater 

than or equal to its momentum in k . Hence, its mass 
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must be .
o

m m γ≥  Now, assuming the Body’s 

momentum in k  is just below the threshold required 

to break a different glass chip, the corresponding 

momentum 
y
P  relative to K must then be equal to 

or less than its momentum p
η

 in .k Hence, its mass 

must be .
o

m m γ≤  It follows that the same body’s 

mass measured from the system K could be either

o
m m γ≥ or ,

o
m m γ≤ depending on some careful 

selection of the glass chip in either case. Hence, 

o
m m γ= must hold in order for the two results to 

agree on the mass, making the body’s transverse 

momentum relative to K  equal to its momentum in 

.k  Hence, the mass invariance assumption can’t 

hold, and the body’s mass in K  must be converted 

to   

 
2 21 .

o
m m v c= −                                   (9) 

 

The above conclusion could be arrived at using 

the following argument. The body’s transverse 

velocity 
y

W  as viewed from the system K  is 

reduced by the factor γ  compared to its velocity w
η

in ,k  due to the time dilation predicted by the 

Special Relativity. Accordingly, the body’s 

transverse momentum would be equally reduced by 

the same factor, had the mass been invariant. 

However, this change in transverse momentum can’t 

be justified with the absence of any relative motion 

in the transverse direction. Hence, the body’s mass 

must increase by the factor γ  in order to conserve 

its transverse momentum. In other words, the time 

dilation should result in a mass increase—in order to 

compensate for the incurred momentum loss. What 

an absurdity! 

Equation (9), required to reconcile the Special 

Relativity with the conservation of momentum law, 

is in contradiction with the prediction of the 

longitudinal and transverse mass obtained from the 

Lorentz transformation, as given by Eq. (8). 

 

3.2 Relativistic mass by conservation of energy 

On the other hand, assume the considered body 

is set up in transverse motion in k ( 0)ξ∆ =  by 

exerting a constant force f
η

 in the transverse 

direction. Let p
η

∆  be the transverse momentum 

picked up by the body within an interval of time 

.τ∆  The exerted force can then be written as 

.f p
η η

τ= ∆ ∆  If we let the transverse distance 

travelled during that time interval be ,η∆  the work 

done on the body by the exerted force will be given 

by 

 w .
p
η
η

τ

∆
= ∆
∆

                                               (10) 

 

From the perspective of ,K  the work done on 

the body is given by 

 W ,y
P

y
t

∆
= ∆
∆

                                              (11) 

 

where 
y
P∆  is the picked up transverse  momentum 

relative to ,K  t∆  the elapsed time, and y∆  the 

corresponding transverse distance with respect o .K   

As seen earlier, the body momentum must be the 

same relative to both frames. Due to the invariance 

of the transverse spatial dimension, and the time 

dilation obtained from the Lorentz transformation 

2( ) ,t v cγ τ ξ γ τ∆ = ∆ + ∆ = ∆  since 0,ξ∆ =  

Eq. (11) leads to 

 
w

W .
p
η
η

γ τ γ

∆
= ∆ =
∆

                                   (12) 

Hence, the work done on the body, or the 

absorbed energy, depends on the reference frame, 

which is in contradiction with the relativity principle 

and the conservation of energy law. 

It follows that the invariance of the transverse 

momentum leads to the relativistic mass equation.  

Yet, this invariance leads to the violation of the 

energy conservation. To maintain the energy 

conservation, we must have, using Eqs. (11)  and 

(12), ,P pγ∆ = ∆ or ,
y o

mW m w
η

γ=  yielding 

,  or
o

mw m w
η η
γ γ=  

 

2

2 2
,

1
o

o

m
m m

v c
γ= =

−
        (13) 
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contradicting the relativistic mass ,
o

m mγ=

obtained in connection with the momentum 

conservation, yet confirming the transverse mass 

eq.(8)  presented by Einstein (1905) as obtained by 

the means of the Lorentz transformation. 

 

4. Kinetic energy equations under force = 

mass x acceleration 

Let there be a ponderable material point, call it a 

body, of rest mass 
o

m  acted upon by a constant 

force F  in the transverse direction. Suppose at the 

instant of time 0
o
t =  the body is at the system K

origin.  Let v  be the velocity of the body at the time 

,t  and m  its mass, all with respect to .K Relative to 

the system k  traveling at the velocity ,v the mass of 

the body at the time instant t would be 
o

m (body is 

at rest in k at this instant). The kinetic energy 

acquired by the body at this time is given by 

.
k

E Fdx= ∫  Applying Newton’s second law of 

motion 
2 2( )F md x dt mdv dt= = , the kinetic 

energy can be written as  ( ) .
k

E m dv dt dx= ∫
Since ,dx vdt=  we get  

 

.
k

E mvdv= ∫      (14) 

 

Evidently, if the mass was constant, Eq. (14) will 

result in the classical kinetic energy equation

21 2( ).
k o

E m v=   

 

4.1 Using the longitudinal mass obtained from 

Lorentz transformation 

As the force is impressed in the motion direction, 

applying Eq.(7) for the longitudinal mass

3( )
o

m mγ= obtained in Einstein’s 1905 paper, we 

get 

 

( )
30

2 2

2

2 2

0

1

 .
1

v
o

k

v

o

m
E vdv

v c

c
m

v c

= =
−

=
−

∫

   

Hence, 

 

2
2

2 2
;

1

o

k o

m c
E m c

v c
= −

−
                           (15) 

 
2

2 2

1
1 ,

1
k o

E m c
v c

   = −   −  

                      (16) 

which is the relativistic kinetic energy formula 

obtained in Einstein’s 1905 paper, based on the 

longitudinal mass 
3( )

o
m mγ= obtained from the 

Lorentz transformation, and the definition of force 

being .mass acceleration×   

Since the first term of the right hand side of 

Eq.(15) is not equal to the longitudinal mass in the 

used context of Eq. (7), the latter equation has no 

implication of mass-energy equivalence. It is just a 

formula for the kinetic energy. For ,v c≪  Eq. (16) 

can be written to the second order as  

 

2
2 2

2

1 1
1 1 ,
2 2k o o

v
E m c m v

c

   = + − =         

which is the classical formula for the kinetic energy. 

 

4.2 Using the relativistic mass obtained from the 

conservation of momentum 

Now, had we used Eq. (9) for the relativistic 

mass ( ),
o

m mγ= an ad-hoc to satisfy the 

conservation of momentum,  Eq. (14) would give 

 
2 20

2 2 2

0

1

1 ;

v
o

k

v

o

m
E vdv

v c

m c v c

= =
−

=− −

∫
   

 ( )2 2 21 1 .
k o

E v c m c= − −                       (17) 

This is another formula (contradicting the one 

obtained earlier) of the relativistic kinetic energy 

based on the relativistic mass ( ),
o

m mγ= and on 

the force being defined as .mass acceleration×   

Again, for ,v c≪  Eq. (17) can be written to the 

second order as  
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2
2 2

2

1 1
1 1 ,

2 2k o o

v
E m c m v

c

   = − − =      
 

 

which is the classical formula for the kinetic energy. 

 

5. Kinetic energy equations under force = 

momentum change rate 

If the force acting upon the body is defined as 

( )F d mv dt= —which would be equivalent to our 

earlier definition ( ),F mdv dt=  had the mass 

been invariant—the kinetic energy acquired by the 

body becomes ( ) .
k

E dmv dt dx= ∫ Hence 

 

( ) ( ) ;k
E mdv dt dx vdm dt dx= +∫ ∫  

     2

0
.

o

v m

k
m

E mvdv v dm= +∫ ∫             (18) 

Evidently, if the mass was constant, Eq.(18) will 

result in the classical kinetic energy equation

21 2( ).
k o

E m v=  

 

5.1 Using the relativistic mass obtained from the 

conservation of momentum 

Using Eq. (9) for the relativistic mass

( )
o

m mγ=   and solving it for 
2v as a function of 

,m  we obtain 

2 2

2 2

2
.o

m c
v c

m
= −  

  

Hence, Eq. (18) leads to 

 

2

2 20

2 2

2

1

   ;

o

o

v m
o

k
m

m
o

m

m v
E dv c dm

v c

m c
dm

m

= + −
−

−

∫ ∫

∫
2 2

2 2 2 2

0

1 ;
o

o

m
v m

o

k o m

m

m c
E m c v c mc

m
= − − + +  

2
2 2 2

2 2     ;

o

k o o

o

o o

m c
E m c mc m c

m
m c m c

m

γ
=− + + − +

+ −

  

    
2 2;

k o
E mc m c= −                                     (19) 

       
2( 1) .

k o
E m cγ= −

  

Equation (19) has the implication of energy-

mass equivalence, with 
2

o o
E m c=  being the body 

rest energy, and 
2E mc= its total energy (rest + 

kinetic energy). As shown earlier, for ,v c≪  the 

latter equation leads to the classical kinetic energy 

equation 
2( 1 2 ).

k o
E m v=   

Nevertheless, Eq. (19) obtained based on the 

definition of force F dP dt=  and relativistic mass 

,
o

m mγ= is not in agreement with the longitudinal 

mass 
3( )

o
m mγ= and force definition 

( )F mass acceleration= ×  adopted in the 

Special Relativity original paper.1 

 

5.2 Using the longitudinal mass obtained from 

Lorentz transformation 

Had we used Eq.(7) for the longitudinal mass

3( )
o

m mγ=  as obtained in Einstein’s 1905 paper, 

Eq.(18) would yield 

 

( )
2

30
2 2

3 2

3

1

  ;

o

o

v m
o

k
m

m
o

m

m v
E dv c dm

v c

m c
dm

m

= + −
−

−

∫ ∫

∫

   

2 3 2

2

22 2

0

;
21 o

o

v
m

m
o o

k m

m

m c m c
E mc

mv c
= + +

−
  

 

3 2

6

1 5
;

22k o
E m cγ γ

γ

  = + + −   
             (20) 
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3 2 1 2
2 2

2 2
2

3
2

2

1 1

,
1 5
1
2 2

k o

v v

c c
E m c

v

c

− −            − + − +              =         + − −           

 

which, for ,v c≪  can be written to the second order 

as 

 

2 2

2 2
2

2

2

3 1
1 1
2 2

;
1 5
1 3
2 2

k o

v v

c c
E m c

v

c

           + + + +            =        + − −           

21
,

2k o
E m v=

  

which is the classical formula for the kinetic energy. 

Equation (20), being based on the Special 

Relativity longitudinal mass derivation from the 

Lorentz transformation, and on the more general 

definition of force as F dP dt= (rather than 

),F mdv dt=  it is the most representative of the 

kinetic energy in the context of the Special 

Relativity. Yet, it is far off from implying the general 

energy equation 
2,E mc=  boasted as being the 

most remarkable prediction of the special relativity 

theory! 

 

Conclusion  

The Special Relativity transformation equations 

result in longitudinal and transverse mass formulae 

contradicting the relativistic mass equation 

( )
o

m mγ= required to maintain the conservation of 

momentum under the Special Relativity predictions. 

This relativistic mass contradicts in turn the 

undesired relative mass obtained in satisfying the 

conservation of energy law under the Special 

Relativity, in conformance with its transverse mass 

equation derived from the Lorentz transformation. In 

defining the force as ,mass acceleration×  each of 

the aforementioned longitudinal and relativistic mass 

formulae results in a different equation for the 

kinetic energy. The formula obtained under the 

Special Relativity assumptions doesn’t actually 

imply the claimed equivalence of mass and energy. 

On the other hand, if the force was defined as being 

the momentum change rate, another two different 

formulae for the relativistic kinetic energy will be 

obtained; one for each of the two aforementioned 

longitudinal and relativistic mass formulae. All these 

formulae lead to the classical kinetic energy equation 

when .v c<< The relativistic kinetic energy 

obtained under the relativistic mass ( )
o

m mγ=  

and the force as being the momentum change rate, is 

given by the formula 
2,

k
E mc= ∆ implying the 

famous equation for the total energy:
2.E mc=  

However, it is not in agreement with the genuine 

Special Relativity predictions, and imprecisely 

attributed to it, not forgetting that the other three 

different obtained formulae are all validated from the 

Special Relativity perspective, creating a detrimental 

incoherence in the Special Relativity. In addition, the 

relativistic kinetic energy equation is based on the 

relativistic mass ensuing from the conservation of 

momentum law in the Special Relativity framework, 

but resulting in its violation of the law of 

conservation of energy. 
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