A Concise Proof of Fermat's Last Theorem¹

ABSTRACT. This paper offers a concise proof of Fermat's Last Theorem using the Euclidean algorithm.

1 Introduction

Fermat's Last Theorem states that no positive integers x, y, z satisfy $x^n + y^n = z^n$ for any integer n > 2.(cf. [1]) This paper will offer a concise proof of this theorem using the Euclidean algorithm.

2 Proof

 $x^p + y^p = z^p$; p: odd prime; x, y, z: pairwise coprime; $x, y, z \in \mathbb{Z}^+$ (positive integer) (1) From (1) it follows that

$$x^{p} + y^{p} = (x+y)f(x,y) = z^{p}; f(x,y) = x^{p-1} + x^{p-2}(-y) + \dots + (-y)^{p-1}.$$
 (2)

Then, according to the polynomial remainder theorem the division of f(x,y) by x+y provides a remainder $R=f(x,-x)=px^{p-1}$. Furthermore, according to the Euclidean algorithm $(x+y,f(x,y))=(x+y,px^{p-1})=p$ or 1 because $x+y\nmid x^{p-1}$. Similarly, (f(z,-x),z-x),(f(z,-y),z-y)=p or 1, if we let $z^p-x^p=(z-x)f(z,-x)=y^p,z^p-y^p=(z-y)f(z,-y)=x^p$.

2.1 In the case (x + y, f(x, y)) = p

(x+y,f(x,y))=p means $p\mid z$, because $(x+y)f(x,y)=z^p$. Similarly, (z-x,f(z,-x))=p means $p\mid y$. $p\mid z$ and $p\mid y$ cannot be satisfied at once, because (z,y)=1. Hence, when (x+y,f(x,y))=p, at least it is required that $(z-x,f(z,-x))\neq p$ (i.e. (z-x,f(z,-x))=1). For the same reason, when (x+y,f(x,y))=p, at least it is required that $(z-y,f(z,-y))\neq p$ (i.e. (z-y,f(z,-y))=1). Now, let $x=x_ax_b,y=y_ay_b$ (where $x_a,x_b,y_a,y_b\in\mathbb{Z}^+$, $(x_a,x_b)=1$, $(y_a,y_b)=1$, $f(z,-x)=y_b^p$, $f(z,-y)=x_b^p$), then z-x,z-y can be written as following (3),(4).

$$z - x = y_a{}^p \tag{3}$$

$$z - y = x_a^p \tag{4}$$

From (3) and (4) it follows that

$$x - y = x_a{}^p - y_a{}^p, \tag{5}$$

where $x - y = x_a x_b - y_a y_b$. Then, according to (2), (5) must be satisfied even if $(x_a, y_a) = k$ ($2 \le k \in \mathbb{Z}$). Hence, $(kx_a)x_b - (ky_a)y_b = (kx_a)^p - (ky_a)^p$, and so $k = k^p$, p = 1. This means that p cannot exist.

2.2 In the case (x+y, f(x,y)) = 1

Let
$$z = z_a z_b$$
 (where $z_a, z_b \in \mathbb{Z}^+$, $(z_a, z_b) = 1$), then when $(x + y, f(x, y)) = 1, x + y$ can be written as $x + y = z_a^p$. (6)

When (x+y, f(x,y)) = 1, at least it is required that both $(z-x, f(z,-x)) \neq p$ and $(z-y, f(z,-y)) \neq p$ at once. Hence, either (6) and (3), or (6) and (4) must be satisfied at once. Thus, similar to the case 2.1 above, p = 1. This means that p cannot exist.

3 Conclusion

Consequently, no positive integers x, y, z satisfy $x^{lp} + y^{lp} = z^{lp}$ (where $l \in \mathbb{Z}^+$). Besides, that no positive integers x, y, z satisfy $x^4 + y^4 = z^4$ was proven by Fermat.([2]) This means according to the laws of exponents that no positive integers x, y, z satisfy $x^{2^m} + y^{2^m} = z^{2^m}$ (where $2 \le m \in \mathbb{Z}^+$). In conclusion, no positive integers x, y, z satisfy $x^n + y^n = z^n$ for any integer n > 2. QED.

References

- [1] Wiles, A., Modular elliptic curves and Fermat's Last Theorem, Ann. Math. 142(1995), 443–551.
- [2] Freeman, L., Fermat's One Proof, http://fermatslasttheorem.blogspot.kr/, Retrieved 2015-04-18.

¹Yun, J., Daegu Univ., 712-714, South Korea; jmyun@daegu.ac.kr

²For reference, even if e.g. (z-x, f(z, -x)) = 1, there still exists the possibility of $p \mid y$, but y, z must not have the common prime factor p like any other positive integers.