A Concise Proof of Fermat's Last Theorem ${ }^{1}$

Abstract. This paper offers a concise proof of Fermat's Last Theorem using the Euclidean algorithm.

1 Introduction

Fermat's Last Theorem states that no positive integers x, y, z satisfy $x^{n}+y^{n}=z^{n}$ for any integer $n>2$. (cf. [1]) This paper will offer a concise proof of this theorem using the Euclidean algorithm.

2 Proof

$$
\begin{equation*}
x^{p}+y^{p}=z^{p} ; p: \text { odd prime; } x, y, z: \text { pairwise coprime; } x, y, z \in \mathbb{Z}^{+}(\text {positive integer }) \tag{1}
\end{equation*}
$$

From (1) it follows that

$$
\begin{equation*}
x^{p}+y^{p}=(x+y) f(x, y)=z^{p} ; f(x, y)=x^{p-1}+x^{p-2}(-y)+\ldots+(-y)^{p-1} \tag{2}
\end{equation*}
$$

Then, according to the polynomial remainder theorem the division of $f(x, y)$ by $x+y$ provides a remainder $R=f(x,-x)=p x^{p-1}$. Furthermore, according to the Euclidean algorithm $(x+y, f(x, y))=$ $\left(x+y, p x^{p-1}\right)=p$ or 1 because $x+y \nmid x^{p-1}$. Similarly, $(f(z,-x), z-x),(f(z,-y), z-y)=p$ or 1 , if we let $z^{p}-x^{p}=(z-x) f(z,-x)=y^{p}, z^{p}-y^{p}=(z-y) f(z,-y)=x^{p}$.
2.1 In the case $(x+y, f(x, y))=p$
$(x+y, f(x, y))=p$ means $p \mid z$, because $(x+y) f(x, y)=z^{p}$. Similarly, $(z-x, f(z,-x))=p$ means $p|y . p| z$ and $p \mid y$ cannot be satisfied at once, because $(z, y)=1$. Hence, when $(x+y, f(x, y))=p$, at least it is required that $(z-x, f(z,-x)) \neq p$ (i.e. $(z-x, f(z,-x))=1)^{2}$ For the same reason, when $(x+y, f(x, y))=p$, at least it is required that $(z-y, f(z,-y)) \neq p$ (i.e. $(z-y, f(z,-y))=1)$.
Now, let $x=x_{a} x_{b}, y=y_{a} y_{b}$ (where $x_{a}, x_{b}, y_{a}, y_{b} \in \mathbb{Z}^{+},\left(x_{a}, x_{b}\right)=1,\left(y_{a}, y_{b}\right)=1, f(z,-x)=y_{b}{ }^{p}$, $f(z,-y)=x_{b}^{p}$), then $z-x, z-y$ can be written as following (3),(4).

$$
\begin{align*}
& z-x=y_{a}{ }^{p} \tag{3}\\
& z-y=x_{a} p \tag{4}
\end{align*}
$$

From (3) and (4) it follows that

$$
\begin{equation*}
x-y=x_{a}^{p}-y_{a}^{p}, \tag{5}
\end{equation*}
$$

where $x-y=x_{a} x_{b}-y_{a} y_{b}$. Then, according to (2), (5) must be satisfied even if $\left(x_{a}, y_{a}\right)=k(2 \leq k \in \mathbb{Z})$. Hence, $\left(k x_{a}\right) x_{b}-\left(k y_{a}\right) y_{b}=\left(k x_{a}\right)^{p}-\left(k y_{a}\right)^{p}$, and so $k=k^{p}, p=1$. This means that p cannot exist.
2.2 In the case $(x+y, f(x, y))=1$

Let $z=z_{a} z_{b}$ (where $z_{a}, z_{b} \in \mathbb{Z}^{+},\left(z_{a}, z_{b}\right)=1$), then when $(x+y, f(x, y))=1, x+y$ can be written as

$$
\begin{equation*}
x+y=z_{a}{ }^{p} . \tag{6}
\end{equation*}
$$

When $(x+y, f(x, y))=1$, at least it is required that both $(z-x, f(z,-x)) \neq p$ and $(z-y, f(z,-y)) \neq p$ at once. Hence, either (6) and (3), or (6) and (4) must be satisfied at once. Thus, similar to the case 2.1 above, $p=1$. This means that p cannot exist.

3 Conclusion

Consequently, no positive integers x, y, z satisfy $x^{l p}+y^{l p}=z^{l p}$ (where $l \in \mathbb{Z}^{+}$). Besides, that no positive integers x, y, z satisfy $x^{4}+y^{4}=z^{4}$ was proven by Fermat.([2]) This means according to the laws of exponents that no positive integers x, y, z satisfy $x^{2^{m}}+y^{2^{m}}=z^{2^{m}}\left(\right.$ where $2 \leq m \in \mathbb{Z}^{+}$).
In conclusion, no positive integers x, y, z satisfy $x^{n}+y^{n}=z^{n}$ for any integer $n>2$. QED.

References

[1] Wiles, A., Modular elliptic curves and Fermat's Last Theorem, Ann. Math. 142(1995), 443-551.
[2] Freeman, L., Fermat's One Proof, http://fermatslasttheorem.blogspot.kr/, Retrieved 2015-04-18.

[^0]
[^0]: ${ }^{1}$ Yun, J., Daegu Univ., 712-714, South Korea; jmyun@ daegu.ac.kr
 ${ }^{2}$ For reference, even if e.g. $(z-x, f(z,-x))=1$, there still exists the possibility of $p \mid y$, but y, z must not have the common prime factor p like any other positive integers.

