A Concise Proof of Beal's Conjecture ${ }^{1}$

Abstract. This paper offers a concise proof of Beal's conjecture using the identity.

1 Introduction

Beal's conjecture states that no pairwise coprimes x, y, z satisfy $x^{a}+y^{b}=z^{c}$ for positive integers $a, b, c>2$. This paper will offer a concise proof of Beal's conjecture using the identity.

2 Proof

$$
\begin{equation*}
x^{a}+y^{b}=z^{c} ; 2<a, b, c \in \mathbb{Z}^{+} ; x, y, z: \text { pairwise coprime; } \mathbb{Z}^{+}: \text {positive integer } \tag{1}
\end{equation*}
$$

2.1 For the case at least one of a, b, c : odd prime $(a \neq b \neq c)$

Let a be an odd prime, and suppose that there exist pairwise coprimes x, y, z satisfying (1), then from (1) it follows that,

$$
\begin{gather*}
\left(x^{a}+y^{a}\right)+\left(y^{b}-y^{a}\right)=z^{c}, \tag{2}\\
x^{a}+y^{a}=z^{c}-\left(y^{b}-y^{a}\right) . \tag{3}
\end{gather*}
$$

Now, let $\mathrm{A}=\left\{x, y, z: x, y, z\right.$ satisfy (3); $\left.x, y, z \in \mathbb{Z}^{+}\right\}, \mathrm{B}=\{x, y, z: x, y, z$ satisfy (3); $x, y, z \in \mathbb{R}\}$. Then, A
$\subset \mathrm{B}$. This means that (3) can be an identity. Then, (3) can be satisfied also in the case $x+y=0$. Hence,

$$
\begin{equation*}
0=z^{c}-\left[(-x)^{b}-(-x)^{a}\right] . \tag{4}
\end{equation*}
$$

(4) means that z, x must have at least a common prime factor when $a \neq b$. The same applies to the case b or c : odd prime, with x^{a} and y^{b}, or: with $(-x)^{a}$ and $(-z)^{c}$, replaced by each other.
Consequently, no pairwise coprimes x, y, z satisfy (1) for at least one of a, b, c : odd prime ($a \neq b \neq c$). Hence, according to the laws of exponents no pairwise coprimes x, y, z satisfy $x^{l_{1} a}+y^{l_{2} b}=z^{l_{3} c}$ (where $l_{1}, l_{2}, l_{3} \in \mathbb{Z}^{+}$). This means that no pairwise coprimes x, y, z satisfy (1) for $2<a, b, c \in \mathbb{Z}^{+}$, unless $a=$ $2^{m_{1}}, b=2^{m_{2}}, c=2^{m_{3}}$, where $2 \leq m_{1}, m_{2}, m_{3} \in \mathbb{Z}^{+}(a \neq b \neq c)$ or $a=b=c$.

2.2 For the case $a=2^{m_{1}}, b=2^{m_{2}}, c=2^{m_{3}}(a \neq b \neq c)$
 $$
\begin{equation*} x^{4}+y^{4}=z^{4} \tag{5} \end{equation*}
$$

That no positive integers x, y, z satisfy (5) was proven by Fermat.([1]) Hence, according to the laws of exponents no positive integers x, y, z satisfy (1) for $a=2^{m_{1}}, b=2^{m_{2}}, c=2^{m_{3}}(a \neq b \neq c)$.

2.3 For the case $a=b=c$

That no positive integers x, y, z satisfy (1) (for $a=b=c$) was proven as Fermat's Last Theorem.(cf. [2])

3 Conclusion

No pairwise coprimes x, y, z satisfy $x^{a}+y^{b}=z^{c}$ for any positive integer $a, b, c>2$. QED.

References

[1] Freeman, L., Fermat's One Proof, http://fermatslasttheorem.blogspot.kr/, Retrieved 2015-04-18.
[2] Wiles, A., Modular elliptic curves and Fermat's Last Theorem, Ann. Math. 142(1995), 443-551.

[^0]
[^0]: ${ }^{1}$ Yun, J., Daegu Univ., 712-714, South Korea; jmyun@daegu.ac.kr

