STRUCTURAL INSIGHTS AT THE ATOMIC LEVEL OF IMPORTANT
MATERIALS: Al and Mn as special examples in honor of D. Shechtman

Raji Heyrovska
Private Research Scientist (present), Academy of Sci., Czech Republic (former)
Email: rheyrovs@hotmail.com

ABSTRACT
A basic insight into the atomic structures of elements of the Periodic Table are presented in terms of their covalent radii, Bohr radii, nuclear and electron radii and their relation to the Golden ratio. The detailed structures of the quasi crystal forming elements, aluminium and manganese have been chosen here as special examples. At the atomic level, their crystal parameters and bond lengths are shown in detail for the first time and related to the Bohr radii obtained from the first ionization potentials. It is hoped that this work will provide deeper insights into the understanding of the bonding and alloy formation of different materials and help in designing materials for their intended purpose.

Keywords: Atomic radii, Bohr radii, Golden Ratio, Atomic structure, Bond lengths, Aluminium, Manganese.
INTRODUCTION

Over a decade ago, the author\(^1\) arrived at the conclusion that the ground state Bohr radius, \(a_B\) of a hydrogen (H) atom obtained from its ionization potential (\(I_H\)) is divided at the Golden point into two Golden sections, \(a_e\) and \(a_{p+}\) pertaining to the electron (\(e^-\)) and proton (\(p^+\)), respectively. These are expressed by the equations,

\[
a_B = e/2\kappa I_H = a_e + a_{p+} ; a_{p+} = (a_B/\phi^2) \quad \text{and} \quad a_e = (a_B/\phi) = \phi a_{p+} \tag{1a-c}
\]

where \(e\) is the charge, \(\kappa\) is the electrical permittivity of vacuum, \(e/2\kappa = 7.1998 \text{ Å/eV}\) and \(\phi = (1+5^{1/2})/2 = 1.618\) is the Golden ratio, also called The Divine Ratio.

The bond length \(d(HH)\) in the hydrogen molecule was shown to be the diagonal of a square with the Bohr radius as a side. Since the latter has two Golden sections, \(d(HH)\) is also divided into two Golden sections which form the anionic and cationic radii of H. The cationic radius, \(d(H^+) = d(HH)/\phi^2 = 0.28 \text{ Å}\) is exactly the value suggested empirically by Pauling\(^2\) to explain the bond lengths in hydrogen halides (HX) and it also explained the bond lengths in alkali metal hydrides (MH). This cascaded into the findings\(^1\) that the bond length \(d(AA)\) between two atoms (A) of the same kind is divided at the Golden point into two Golden sections, \(d(A^-)\) and \(d(A^+)\), which form the anionic (\(A^-\)) and cationic (\(A^+\)) radii of atoms as shown below,

\[
d(AA) = 2d(A) = d(A^-) + d(A^+) \tag{2a}
\]
\[
d(A^+) = d(AA)/\phi^2 \quad \text{and} \quad d(A^-) = d(AA)/\phi \tag{2b,c}
\]
where $d(A) = d(AA)/2$ is the covalent radius. The radii increase in the order, $d(A^+) > d(A) > d(A^-) = (2/\phi^2) > 1 > (2/\phi) = 0.764 > 1 > 1.236$. Note: the symbol d is used here for covalent radii since they are apportioned distances.

In the case of the ionic crystals of alkali halides (MX), it was shown\(^1\) that the Golden ratio based cationic (M^+) and anionic (X^-) radii, $d(M^+) = d(MM)/\phi^2$ and $d(X^-) = d(XX)/\phi$ respectively, add up to give the exact crystal ionic distances $d(MX)$, where the inter-atomic bond length, $d(MM) = a$, the lattice parameter for the bcc lattice of the alkali metals (M) and $d(XX)$ is the bond length in the diatomic halogen (X) molecules. It was gradually found that bond lengths between any two atoms, $d(AB)$, in many inorganic, organic and biological molecules can be expressed as the sum of the radii of A and B, whether they be covalent or ionic. A whole series of over 20 contributions/publications\(^3-24\) followed the above findings.

Amongst these, it was also shown\(^8,15,17\) that the covalent atomic radii, $d(A)$ and various other radii of atoms (A) of many Group A elements vary linearly with their Bohr radii, $a_{B,A}$ obtained from their first ionization potentials (I_1), as in the case of hydrogen,

\[
a_{B,A} = e/2\kappa I_1
\]

In\(^17\) the covalent atomic radii obtained from lattice parameters and the Bohr radii ($a_{B,A}$) for all the elements of the Periodic Table were shown to be related by a simple function of ϕ:

\[
d(A)/a_{B,A} = K_\phi = \tan \theta
\]
PRESENT WORK AND RESULTS

In this article, data from17 have been used. It can be seen in the data in16 that in each Group, the ratio K_ϕ increases with increasing $d(A)$. Hydrogen has the lowest value while the inert gases and mercury have high values around 2.

Fig. 1 shows the sizes of the covalent atomic radii of atoms relative to their Bohr radii for some arbitrary values of K_ϕ.

![Fig. 1. Covalent radii, $d(A) = d(AA)/2$ of atoms relative to their Bohr radii ($a_{B,A}$) for some chosen values of $K_\phi = d(A)/a_{B,A} = \tan \theta$.](image)

The case of great interest for the author was to find out the atomic structures of Al and Mn, which form alloys and quasi crystals with the Golden ratio in their lattice structures.

The detailed structure of Aluminium is shown in Fig 2. The values25 of the fcc cell parameters, covalent radius $d(A) = 1.43 \text{ Å}$ and Bohr radius17 are given in Fig.2. The
ratio, \(K_\phi = \frac{d(A)}{a_{B,A}} = (1 + 1/2\phi^2) = 1.19 \). The cell parameter, \(a = b = c = 4.05 \, \text{Å} = 2^{1/2}d(\text{AA}) = 2^{3/2}(a_{B,A} + a_{e}/2\phi) \). Note that two adjacent atoms of the same radii make an

angle \(\sin^{-1}(2/5^{1/2}) = 63.43^\circ \) as shown in Fig. 2, where \(5^{1/2}/2 = \phi - 1/2 \).

In the case of manganese, the cell parameters \(25 \) and the bond length \(d(\text{Mn-Mn}) = 2.73 \, \text{Å} \) are as given in the Fig. 3. It is striking to see that the diagonal, \(2^{1/2}d(\text{Mn-Mn}) \)
of a square with \(d(\text{Mn-Mn}) \) as the sides is exactly \(4a_{\text{B,A}} = 3.87 \, \text{Å} \), the diameter of two Bohr circles. The central circle is a hole with Bohr radius.

\[
\sin^{-1}(2^{1/2}) = 63.43^\circ
\]

\[
2^{1/2}d(\text{AA}) = 4a_{\text{B,A}}
\]

Mn (cubic): data:
- \(a = b = c = 8.9125 \, \text{Å} \)
- \(d(\text{AA}) = 2.731 \, \text{Å} \)

\[
a_{\text{B,A}} = a_{\text{n+}} + a_{\text{e-}}
\]

Mn: Bohr radius, \(a_{\text{B,A}} = 0.97 \, \text{Å} \); \(a_{\text{n+}} = a_{\text{B,A}}/\phi^2 = 0.37 \, \text{Å} \); \(a_{\text{e-}} = a_{\text{B,A}}/\phi = 0.60 \, \text{Å} \).

Covalent radius, \(d(\text{A}) = d(\text{AA})/2 = 1.37 \, \text{Å} = 2^{1/2}a_{\text{B,A}} (= 1.37) \)

\[
d(\text{A})/a_{\text{B,A}} = 1.414 = \tan\theta; \quad \theta = 54.73^\circ = (1+5^{1/2})/2 = \phi.
\]

Cell parameter, \(a = 8.9125 \, \text{Å} \); \(a/2 = 4.46 \, \text{Å} = (2/3^{1/2})[2^{1/2}d(\text{AA})] = \text{bcc edge length}; (a/2: line with dashes: out of plane).\)

Fig. 3. Structure at the atomic level of Manganese. The cell parameter, \(a = b = c = 8.9125\, \text{Å} \). The distance \(a/2 \) is of a body center cube with the center to edge distance equal to \(2^{1/2}d(\text{Mn-Mn}) \), which is the diagonal of the square with sides equal to \(d(\text{Mn-Mn}) \). \(a_{\text{B,A}} \) is the Bohr radius and \(a_{\text{n+}} \) and \(a_{\text{e-}} \) are the radii of its nucleus and electron.

Half the cell parameter, \(a/2 \) is the edge length of a bcc structure, with the center to edge distance equal to the diagonal of the square, \(2^{1/2}d(\text{Mn-Mn}) = 4a_{\text{B,A}} \).
It is hoped that the above structures of Al and Mn can be put together to construct the 3D structures of Al-Mn alloys and explore their relation to the Golden ratio.

Similarly, the structures at the atomic level of other materials can be elucidated and materials can be chosen for their desired purposes.

REFERENCES

1. The Golden Ratio, Ionic and Atomic Radii and Bond Lengths

3. Fine Structure Constant, Anomalous Magnetic Moment, Relativity Factor and the Golden Ratio that Divides the Bohr Radius

4. Dependence of Ion-water Distances on Covalent Radii, Ionic Radii in Water and Distances of Oxygen and Hydrogen of Water from Ion/water Boundaries

5. Dependence of the Length of the Hydrogen Bond on the Covalent and Cationic Radii of Hydrogen, and Additivity of Bonding Distances

7. Atomic Structures of Molecules Based on Additivity of Atomic and/or Ionic Radii.
 Editor(s): Beverly Karplus Hartline, Renee K. Horton, Catherine M. Kaicher.3rd IUPAP International Conference on Women In Physics 2008, Seoul, South Korea,
7th -10th of October, 2008;

8. Direct dependence of covalent, van der Waals and valence shell radii of atoms on their Bohr radii for elements of Groups 1A - 8A

R. Heyrovská, 10th Eurasia Conference on Chemical Sciences, Manila, Philippines, 7 - 11 January 2008, Ohtaki Memorial Lecture:

http://eurasiachem10.philippinechem.org/assets/EuAsC2S-10FINAL.doc

9. Various Carbon to Carbon Bond Lengths Inter-related via the Golden Ratio, and their Linear Dependence on Bond Energies.

R. Heyrovská, Proceedings of the 9th Eurasia Conference on Chemical Sciences, Antalya, Turkey, September 2006:

Chapter 12 in Book: *Innovations in Chemical Biology*, Editor: Bilge Sener, Springer.com, January 2009:

11. Golden Sections of Interatomic Distances as Exact Ionic Radii and Additivity of Atomic and Ionic Radii in Chemical Bonds.

12. Golden Sections of Inter-atomic Distances as Exact Ionic Radii of Atoms.

R. Heyrovská, http://precedings.nature.com/documents/2929/version/1

R. Heyrovská, http://hdl.handle.net/10101/npre.2011.6059.2

14. Structures of molecules at the atomic level: Caffeine and related compounds

15. Atomic and Ionic Radii of Elements and Bohr Radii from Ionization Potentials are Linked Through the Golden Ratio.

16. Bond lengths, Bond angles and Bohr Radii from Ionization Potentials Related via the Golden Ratio for H$_2$+, O$_2$, O$_3$, H$_2$O, SO$_2$, NO$_2$ and CO$_2$.

17. Atomic, Ionic and Bohr Radii Linked via the Golden Ratio for Elements Including Lanthanides and Actinides

18. Atomic, ionic and Bohr radii linked via the golden ratio for the elements in DNA: C, N, O, P and H

R. Heyrovská, "XIII. Meeting of physical chemists and electrochemists "and" VII. Electrochemical Summer School", Mendel University, Brno, May 2013.

Theme: "60 years DNA: 1953 - 2013

19. Golden Ratio Based Fine Structure Constant and Rydberg Constant for Hydrogen Spectra

20. Bond Lengths in Carbon Dioxide, Carbon Monoxide and Carbonic Acid as Sums of Atomic, Ionic and Bohr Radii. - *Dedicated to Joseph Black (April 1728 - December 1799)*

21. The Golden Ratio In Atomic Architecture (Keynote talk)
R. Heyrovska "Shechtman International Symp., Cancun, Mexico, June/July 2014";
http://www.flogen.org/ShechtmanSymposium/plenary_abst.php?page=2&p=Raji_Heyrovska&e=rheyrovs@hotmail.com&pi=124

22. Bond Lengths as Exact Sums of the Radii of Adjacent Atoms and or Ions in the Structures of Molecules (Lead Lecture)

23. New Interpretation of the Structure and Formation of Ozone Based on the Atomic and Golden Ratio Based Ionic Radii of Oxygen

24. The Golden ratio, a key geometrical constant in atomic architecture