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Abstract5

Previous studies have indicated that multi-interval discretization (seg-6

mentation) of continuous-valued attributes for classification learning might7

provide a robust machine learning approach to modelling species distribu-8

tions. Here we apply a segmentation model to the Bradypus variegatus9

– the brown-throated three-toed sloth – using the species occurrence and10

climatic data sets provided in the niche modelling R package dismo and11

a set of 940 global data sets of mixed type on the Global Ecosystems12

Database. The primary measure of performance was the area under the13

curve of the receiver operating characteristic (AUC) on a k-fold valida-14

tion of predictions of the segmented model and a third order generalized15

linear model (GLM). This paper also presents further advances in the16

WhyWhere algorithm available as an R package from the development site17

at http://github.com/davids99us/whywhere.18

1 Introduction19

Ecological niche models such as BIOCLIM [10] and generalised linear models20

(GLMs) [1] are based on the proposition that the response of the species to its21

environment is continuous and unimodal. Symmetry in the response has been22

associated with equilibrium of the species with its environment. However non-23

equilibrium due to ecosystem or climate disturbance and/or species mobility24

means a simple and symmetrical niche shape is most likely the exception and25

not the rule [9].26

In contrast to climatic-based models, applied conservation studies tend to27

focus on habitat features, or habitat suitability indices (HSIs), based on the28

structure of the environment such as availability of nesting sites, physical bar-29

riers and resource sources. HSIs are expressive of finer scale forest and aquatic30

environments where climatic variables do not down-scale. HSIs are proximal31

causes of occurrence of species than more distal climate envelopes. Habitat32
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variables are often categorical factors and there are very many possible habi-33

tat factors that could determine each species. Integration of continuous and34

categorical models into a single model can be a challenge.35

On the basis of these and other studies we hypothesized in [18] that seg-36

mented models could be used to fit arbitrary responses, would be at least as37

accurate as continuous models, and be of greater accuracy when mining large38

environmental data sets that contain mixed habitat and climatic variables. The39

second hypothesis was confirmed using the segmented modelling method called40

WhyWhere [18, 17] (WW1) and both are again addressed in this new version41

(WW2). Moreover, we present theoretical and practical advances of the algo-42

rithm enabling the goal of incorporating species distribution modelling into an43

artificial intelligence environment [2].44

2 Methods45

A package for species modelling in R called dismo includes a number of popular46

methods including MaxEnt, Bioclim, Domain, GLM, GAM, and RandomForest.47

This package implements elements of the SDM work flow originally developed48

in the GARP machine learning system [14], such as pseudo-absences, whereby49

a random sample of the environment is in lieu of true absence values. The50

dismo package contains bioclimatic variables from the WorldClim database [8]51

and terrestrial biome data on terrestrial ecoregions [11].52

Other R packages that have made WhyWhere more accessible are the raster53

package for handling gridded spatial data [19] and a new package called data.table54

for fast aggregation of large data sets [3].55

Any species modelling method must address three main stages, and problems56

arising at any of these stages can lead to poor results: (1) getting the environ-57

mental data into a uniform form for analysis (2) determining the best type of58

model to use to represent the response of the species (3) the interpretation of59

the results.60

2.0.1 Environmental variables61

As geographic variables come in varying extents, projections and resolutions,62

they must generally be unified by coregistrtion before modelling. But this entails63

additional processing and inefficiencies. Smaller resolution sets must be enlarged64

redundantly and information lost when contracted. Memory needs burgeon65

when coregistering many variables to the finest scale. An ideal method would66

utilize each data set at its native projection and resolution.67

After coregistration of geographic layers, most satistical models input a68

’wide’ file format, i.e. with variables in columns and locations in rows. This69

adds an intermediate processing step where all environmental data must be then70

be held in memory, which can hit memory limitations at the prediction stage71

when the models are applied across the geographic space.72
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The approach in WW1 was to transform geographic variables into a compact73

image format and then to combine at most three variables into the image in the74

red, green and blue channels. While fast image processing packages could then75

be used for segmentation, the range of the variables were scaled between 0-255,76

and also did not obviate the need for coregistration of geographic data. One77

advance in WW2 is the manner of building multidimensional models. The key78

insight is that the evaluation of a combination of two or more variables can79

be performed on the predictions of the models, instead of being performed in80

the high-dimensional model model space; a higher dimensional model is not81

required.82

For example, the response on a single variable is called a membership func-83

tion (for reasons explained later). Prediction assigns a membership value to each84

data point in the training set, producing a vector of values in the range [0,1]85

which can be evaluated (using the ROC or AUC). The membership vectors for86

two single variables can be combined using a fuzzy AND operator to produce a87

new membership vector. This membership vector can then be evaluated (using88

the ROC or AUC), thus evaluating the performance of the conjunction with-89

out calculating the two-dimensional membership function. The combination of90

membership functions follows the AND, OR Zadeh operators [20]:91

AND : x ∧ y = min(f(x), f(y)) (1)

OR : x ∨ y = max(f(x), f(y)) (2)

This eliminates the need to develop and express a higher dimensional model,92

enabling a data mining approach where we can explore large databases for a93

parsimonious model of the species in analysis. Because of this we here focus on94

single variable models.95

2.0.2 Choice of model structure96

Ecological theory maintains that the response of species to the environment is97

generally ’humped’ around an ideal, or restricted to a range of a variable (e.g.98

the range of temperature tolerances). Such a model must be at least quadratic99

to represent a unimodal response, and order three to incorporate skewness. An100

ideal method would be robust to any non-linear response type. Many environ-101

mental variables are categorical particularly soil and vegetation type. Ideally a102

modeling system integrates both types: continuous (e.g. temperature, rainfall)103

or categorical (e.g. biome or soil type) but very few do.104

MaxEnt solves this problem by providing a range of potential response types105

[12]. The approach in WhyWhere is cutting up the range of the variable into106

discrete categorical factors. WW1 [18] used a color quantization algorithm in the107

GIF image format. WW2 segments a single continuous or categorical variables108

into open-closed intervals. For example, the output of the R cut function on the109

numbers 1..4 into 2 levels as open-closed intervals:110

> cut(1:4,2)
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[1] (0.997,2.5] (0.997,2.5] (2.5,4] (2.5,4]

Levels: (0.997,2.5] (2.5,4]

The unique 4 categorical values could also be represented in the same open-111

closed syntax.112

> cut(1:4,4)

[1] (0.997,1.75] (1.75,2.5] (2.5,3.25] (3.25,4]

Levels: (0.997,1.75] (1.75,2.5] (2.5,3.25] (3.25,4]

The cuts do not need to be uniformly spaced. The default method of de-113

termining the cut locations in WW1 followed the median cut algorithm which114

assigns equal numbers of points to a limited number of categories [7] in the115

red, green, blue 3D space. This has been shown to retain good visual appear-116

ance, but also has a statistical justification of minimizing the variance across the117

range, by minimizing the variance in each category. There are other methods118

of multi-interval discretization of continuous-valued attributes for classification119

learning [4] implemented in the discretization R package.120

The calculation of the intensity of species’ response is straightforward on a121

segmented variable. The locations where the species occurs can be thought of122

as a sampling of the environmental space with a count of values in the each123

environmental category (S), and expressed as a density by normalizing the sum124

over the values in the categories to one. The prior density of values in each125

environmental category is G. The change in the density from G to S indicates126

strength of the the response of the species to its environment in that category –127

the membership function M . A membership function is a fuzzy truth value as128

a function f : R → [0, 1] from a numeric domain to the real unit interval. The129

membership function we used in WW1 and in WW2 for each category i in f is:130

Mi = Si/(Si +Gi) (3)

What we would like is the conditional probability of species being present131

given the environmental P (S|G) for each category of G. Frequentest calculations132

give us P (G|S). While P (S|G) could be obtained using Bayes Theorem, it133

requires an estimate of probability of the occurrence of a species P (S), which in134

opportunistic data is not well defined, and dependent on season, search effort and135

other uncontrolled variables. The best we can do is an approximate equivalence136

that holds under certain conditions (principally independence of variables) and137

has been shown to be sufficient and useful in modelling such relationships [15,138

16]. Where β is a normalization factor:139

P (S|E) = βP (E|S) (4)

One may ask why not calculate S/G and not S/(S + G)? Because we are140

developing a model on a background set, developed from a random sample of141

points in G, this can result in points in Si that are not in Gi. That is, the142

species occurs in environments that are not represented in the background set.143

4



-Submitted-

Use of S/(S + G) avoids a divide by zero error. The membership function is a144

proportional relationship which is sufficient to compare the efficiency of single145

variables.146

There are many ways to evaluate skill of a model. The approach to evaluating147

the strength of the response in WW1 was significance with the Chi-squared test148

or a K-S test, however we find it more convenient to use the area under the149

curve of the receiver operating characteristic, or AUC. The receiver operating150

curve (ROC) is widely used to compare classification models, while the AUC151

provides a robust measure of skill. It is the probability that a model correctly152

classifies a random draw of a positive and negative example.153

2.0.3 Ecological interpretation154

How does the structure of a multi-dimensional model embody the ecology of the155

species? Many methods used in species modelling are based in other domains156

(e.g. linear regression) without clear ecological interpretation. For example,157

when inconsistent units such temperature and rainfall are combined in a gener-158

alized linear model, how are they to be interpreted?159

Ecological principles such as competitive interactions [13] tend to be in the160

form of logical expressions. The principle of Liebig’s Law of the Minimum states161

that growth is controlled by the scarcest necessary resource. This is logically a162

fuzzy conjunction of limiting factors – a Zadeh AND. Another law of ecology163

is Gauss’s law of competitive exclusion. This is a proposition that two species164

competing for the same resource cannot coexist at constant population, due to165

effect of slight advantages magnified over generations. This is a fuzzy disjunction166

– a Zadeh OR. Thus fuzzy AND and OR can represent elements of established167

ecological theory. The approach of modelling with a logical expression of a small168

number of variables has utility in interpreting as ecological theory.169

2.1 WhyWhere Algorithm170

The first step is to ’presample’ which when given a set of presence data locations,171

and a geographic file that serves as a mask, produces a combined list of the172

presence data and a randomly sampled list of sites of both presence and absence.173

The mask file defines the geographic extent for sampling the background data.174

If absences are available then they need not be generated.175

The inputs to WW2 are: a data.table from presample with the longitude176

and latitude of known locations, and a list of environmental data files that177

may be read into the raster package. This file is then input to the main178

routine with a list of the geographic files. Parameters include multi for searching179

conjunctions of variables and segment to select the form of segmentation.180

The algorithm proceeds by looping through the environmental variables and181

creating and evaluating a membership function on each one. A table of the182

variables so-far is retained. In the current implementation of a multi-dimensional183

model, only the best variable is combined with each new variable using the fuzzy184

minimum and the AUC recalculated. Alternative approaches to searching the185
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space of conjunctions may be implemented in future. It is possible to monitor186

the progress with the plot option. This plots out the best model so far and187

prints out a list of the best models considered in a streaming work flow.188

Listing 1: Listing of the main algorithm
189

input l o c a t i o n s190

input a mask f i l e191

prepare background points and combine with presence points192

for a l l environmental f i l e s do193

develop membership function for f i l e194

i n s e r t AUC and variable name in to ordered r e s u l t195

t e s t conjunct o f t h i s variable with best so f a r196

i f r e s u l t i s be t t e r then i n s e r t i n to ordered r e s u l t197

output table o f r e s u l t s198
199

We show the results for the brown-throated three-toed sloth (Bradypus variegatus)200

that is documented and modeled in dismo. The environmental data consist of 9201

environmental files from the WorldClim data set covering the South American202

continent. Figure 1 shows (A) the best variable, (B) the AUC of the best model,203

(C) the membership function, and (D) the predicted distribution with the pres-204

ence points. The highest rated variable in the Bradypus data set is bio7 = the205

temperature annual range (bio5 − bio6) where bio5 = maximum temperature206

of the warmest month and bio6 = minimum temperature of the coldest month.207

The result is very similar to the results from GARP and MaxEnt in [12]. Table 2208

lists the results for all variables.209

Table 1: The AUC of environmental variables on the Bradypus data: WW is
WhyWhere and GLM is a third order generalised linear model.

name WW GLM
1 bio7 0.76 0.74
2 bio12 0.73 0.70
3 bio6 0.72 0.67
4 bio17 0.70 0.67
5 bio16 0.68 0.67
6 biome 0.67 0.65
7 bio5 0.63 0.61
8 bio1 0.63 0.59
9 bio8 0.59 0.57

10 limit 0.00 0.00

The membership function shown graphically in Figure 1.C is represented210

internally as a lookup table, shown in Table2. The prior distribution (G1) is the211

blue line, and the distribution of presences (G2) is the red line. The membership212

function is shown by the grey bars (G1/(G1 + G2)). Note the almost uniform213

distribution of background classes in the variable width quantile cuts.214
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Variable

WW

GLM

Value

bio7

0.7621

0.738

0.0

0.2

0.4

0.6

100 150 200 250 300
Values

pr
ob

Figure 1: Output of WW2 on the Bradypus data set. (A) the best variable,
(B) the AUC of the best model, (C) the membership function, and (D) the
predicted distribution with the presence points in green.
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Table 2: The lookup table for the membership function on the Bradypus data.
Each row is a segment of the range of the variable (factors). The density of
points in each segment in the background (g1) and the points where species
occur (g2) is used to calculate the odds ration, and then membership in each
segment. The width is the size of the segment interval

factors levels g1 g2 odds prob width
1 (64,106] 1 0.13 0.31 2.44 0.71 42.00
2 (106,113] 2 0.11 0.22 1.94 0.66 7.00
3 (113,119] 3 0.11 0.16 1.47 0.59 6.00
4 (119,128] 4 0.10 0.12 1.21 0.55 9.00
5 (128,144] 5 0.10 0.10 1.00 0.50 16.00
6 (144,159] 6 0.09 0.04 0.47 0.32 15.00
7 (159,173] 7 0.09 0.04 0.47 0.32 14.00
8 (173,186] 8 0.10 0.01 0.09 0.08 13.00
9 (186,200] 9 0.08 0.00 0.00 0.00 14.00

10 (200,307] 10 0.09 0.00 0.00 0.00 107.00

3 Experiments215

3.1 K-fold Validation216

K-fold validation provides a robust evaluation of the accuracy of a method217

on independent data. The data was prepared by generating a data set using218

presample, and then labeling each row from one to 5. K-fold validation proceeds219

by sequentially holding back one fifth of the data each time for evaluation, and220

developing the model using the remaining four-fifths. Table 3 shows the results221

of the five-fold validation.222

Table 3: Results of a five-fold validation of Bradypus model. WW is WW2 and
GLM is generalised linear regression. the suffix tr is the AUC on the training
set and te is the AUC on the test set.

name WWtr GLMtr WWte GLMte
1 bio7 0.77 0.73 0.77 0.78
2 bio7 0.77 0.74 0.74 0.73
3 bio7 0.76 0.73 0.74 0.78
4 bio7 0.76 0.73 0.78 0.77
5 bio7 0.77 0.74 0.74 0.75
6 mean 0.77 0.73 0.75 0.76
7 sd 0.00 0.00 0.02 0.02

The accuracies were similar on test and training sets and between the WW2223

and the GLM models, and the best variable bio7 was chosen consistently. The224

performance of WW2 not dissimilar to the GLM.225
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3.2 Multi-dimensional option226

Table 4 lists the results for multidimensional models developed by combining227

the prediction of two or more variables with a fuzzy AND operator and then228

evaluating the resulting AUC.229

Table 4: The AUC of environmental variables on multi-dimensional prediction
of the Bradypus data: WW is WhyWhere and GLM is a third order generalised
linear model.

name WW GLM
1 bio7.biome 0.85 0.90
2 bio7 0.78 0.75
3 bio12 0.73 0.70
4 bio17 0.73 0.68
5 bio6 0.72 0.67
6 bio12.bio6 0.72 0.71
7 bio12.bio17 0.72 0.68
8 bio16 0.68 0.66
9 bio12.bio16 0.68 0.66

10 biome 0.67 0.65
11 bio5 0.64 0.61
12 bio1 0.62 0.59
13 bio8 0.59 0.57
14 bio12.bio5 0.52 0.72
15 bio7.bio8 0.49 0.71
16 limit 0.00 0.00

The best result is a combination of bio7 and biome variables (the AUC of230

WW=0.7969 and GLM=0.906). The variable biome is a categorical variable231

expressing ecosystem type, and so more like a habitat variable than a numeric232

climatic variable.233

3.3 Alternate segmentation234

We also evaluated some alternative methods of segmenting the response func-235

tion, shown on Table 5: an even distribution of cuts over the range of the236

variable, distribution by quantile frequency, and an entropy optimizing method.237

The even method segments the variable evenly over the range. The quantile238

method segments the variable so that as far a possible each segment contains239

an equal number of data.240

The number of segments is determined using the Freedman-Diaconis rule241

[5] for optimal binning of histograms. The entropy method uses the R package242

discretization and the routine cutPoints() that perform cuts for the Minimum243

Description Length Principle. This analysis is not a comprehensive evaluation244

of discretization method, but serves to validate the performance of the quantile245

approach in comparison of some readily available alternatives.246
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Table 5: Results of a five-fold validation of these data with other segmentation
approaches: even, quantile and entropy.

name WWtr GLMtr WWte GLMte segment
1 mean 0.77 0.73 0.75 0.76 even
2 mean 0.77 0.73 0.75 0.76 quantile
3 mean 0.75 0.72 0.71 0.72 entropy

The segmentation methods that performs best on the test set are the even247

and quantile methods, and their performance is similar on the training set.248

The entropy method performed less well. This provides support for the quan-249

tile approach that was used in WW1, although further testing of segmentation250

approaches may lead to improvements.251

3.4 Prediction on World Data252

To demonstrate the system on a larger data set we use the Global Ecosystems253

Database, a set of 940 global data sets of environmental variables, previously254

prepared and used in the WW1. The multi-agency distribution of the original255

CD includes many groups of variables listed in [17] including satellite green-256

ing, monthly temperature and rainfall and many others in a range of different257

resolutions in raster and vector formats.258

Table 6: The top ten variables in a single variable WhyWhere model of Bradypus
using the 940 variarable World dataset. AUC is the WW AUC and BAUC is
the AUC from GLM.

name AUC BAUC
1 fnocwat 0.85 0.80
2 srzsoil 0.85 0.68
3 wrzsoil 0.85 0.58
4 wrroot 0.84 0.71
5 lcprc08 0.84 0.74
6 lwerr05 0.84 0.76
7 wrcla01 0.84 0.57
8 wrcla03 0.84 0.54
9 SALINITY ANN AVG 0.84 0.68

10 wrsil02 0.83 0.65

Table 6 lists the top 10 variables identified by the algorithm in predicting259

Bradypus on the World dataset. Out of 940 variables, the top variables were260

fnocwat: Navy Terrain Data - Percent Water Cover. The next three variables261

are soil classifications – srzsoil: Staub and Rosenzweig Zobler Soil Units, and262

Webb et al Soil Particle Size Properties Zobler Soil Types. The fifth variable is263

climatic: Leemans and Cramer August Precipitation (mm/month) which corre-264

sponds to the dry season in Amazonia. Note that the accuracy of the GLM is265
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less than the WW2 in this case.266

It might be inferred from this limited study that habitat features have greater267

predictive power than climatic variables over the region of distribution for this268

species. By way of interpretation, Bradypus variegatus does leave the trees269

in search of food and while it crawls along the forest floor poorly, it does swim270

well [6]. Its distribution may be closely linked to the flooded forest (defined as a271

seasonal inundation of the forest floor) facilitating access to other trees for food.272

The identification of soil classification may be indicative of the soils supporting273

a the flooded forest ecosystem.274

Habitat variables are proximal causes of species which necessarily produce275

higher accuracy than the more distal climatic variables. It is well known that276

habitat features are crucial in identifying suitable areas of land for the conser-277

vation of threatened species, and due to the proximal relationship should be a278

more important determinant of species decline than distal factors such as cli-279

mate change. This is not a definitive examination of determinants of Bradypus,280

but serves to illustrate the potential expositions available from this approach.281

4 Discussion282

This study evaluated the accuracy of a segmented model and algorithm in an283

updated version of WhyWhere against a generalized linear model, and also mod-284

elling species response to climate variables and accuracy on a large data set285

containing mixtures of continuous and categorical environmental data.286

The accuracies were similar on the Bradypus data set and WhyWhere was287

superior on the large World dataset, attributed to selection of the best WW2288

variables and handling of categorical as well as continuous variables. The ben-289

efit of WW2 are more accurate species prediction, and potential insight into290

proximal cause of the species occurrences. The results verify the findings of291

the previous version of the WhyWhere, showing progress that could be made292

in modelling species response to the environment by using segmented models of293

few variables mined from large databases of environmental variables.294

The recoding of WhyWhere into R has greatly improved the programs’ utility.295

Refinements to the algorithm reduce the steps in the species modelling work-296

flow and support more efficient higher dimensional models using novel fuzzy set297

operators.298

It is interesting to note that that the two variables identified in the multi-299

variable mode are habitat variables (biome) and a climate variable (bio7). We300

hypothesize that climate and habitat factors are independent causal factors301

that together determine species distribution, and that the multi-dimensional302

WW2 can correctly identify such independent determinants of species response,303

yielding a parsimonious explanation of the species’ response to its environment.304

More complex expressions of species distribution models in the R package305

WhyWhere are planned, as are improvements in computational efficiency and306

testing over a greater range of higher resolution environmental data.307
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