Sidharth Ghoshal
March 23, 2015

Consider:

$$
D_{h, x} f=a_{1} f+a_{2} f^{2}
$$

Let

$$
f=\Omega u
$$

Then:

$$
D_{h, x} f=D_{h, x} u \Omega+u D_{h, x} \Omega+h D_{h, x} u D_{h, x} \Omega
$$

Thus we have:

$$
D_{h, x} u \Omega+u D_{h, x} \Omega+h D_{h, x} u D_{h, x} \Omega=\mathrm{a}_{1} \Omega \mathrm{u}+\mathrm{a}_{2} \Omega^{2} \mathrm{u}^{2}
$$

If we let:

$$
\frac{a_{1} \Omega-D_{h, x} \Omega}{\Omega+h D_{h, x} \Omega}=\kappa
$$

For a constant κ.

This yields

$$
D_{h, x} \Omega-a_{1} \Omega=k \Omega+k h D_{h, x} \Omega
$$

Giving us:

$$
0=\left(k+a_{1}\right) \Omega+(k h-1) D_{h, x} \Omega
$$

Which is a linear Difference equation we can solve for Ω.
Note that the function in equation

$$
D_{h, x} f=a_{1} f+a_{2} f^{2}
$$

After finding a suitable Ω can be reduced to

$$
D_{h, x} u=\kappa u+b(x) u^{2}
$$

Meaning that

$$
D_{h, x} u=u(b(x) u+\kappa)
$$

Now suppose we assume:

$$
u=(1+h)^{\frac{q}{h}} \rightarrow D_{h, x} u=(1+h)^{\frac{q}{h}}\left(\frac{(1+h)^{D q}}{h}-\frac{1}{h}\right)
$$

If we can resolve:

$$
\frac{(1+h)^{D_{h, x} q}}{h}-\frac{1}{h}=b(x) u+\kappa
$$

We're done. But some care is needed since if $\mathrm{kh}=1$ we get a problem.

$$
0=\left(k+a_{1}\right) \Omega+(k h-1) D_{h, x} \Omega
$$

Then declare that

$$
-\frac{1}{h}=\kappa
$$

Thus we are left with the question. Find q if:

$$
\frac{(1+h)^{D_{h, x} q}}{h}=b(x) u \rightarrow \frac{(1+h)^{D_{h, x} q}}{h}=b(x)(1+h)^{\frac{q}{h}}
$$

This gives us

$$
\begin{gathered}
(1+h)^{D_{h, x} q}=h b(x)(1+h)^{\frac{q}{h}} \rightarrow \\
D_{h, x} q=\log _{1+h} h b(x)+\frac{q}{h} \rightarrow \\
D_{h, x} q-\frac{1}{h} q=\log _{1+h} h b(x)
\end{gathered}
$$

We solve this by the technique of coupled integration factors. We declare:

$$
\left\{\begin{array}{l}
\lambda_{2} \\
\lambda_{1}
\end{array}\right\}
$$

Such that:

$$
\begin{gathered}
\lambda_{1}+h D_{h, x} \lambda_{1}=\lambda_{2} \\
D_{h, x} \lambda_{1}=-\frac{1}{h} \lambda_{2}
\end{gathered}
$$

From which it follows

$$
\left\{\begin{array}{c}
\lambda_{1}=2 \lambda_{2} \\
D_{h, x} \lambda_{1}=-\frac{1}{2 h} \lambda_{1}
\end{array}\right\}
$$

The latter yields us a solution assuming exponential ansatz:

$$
\lambda_{1}=(1+h)^{\frac{m(x)}{h}} \rightarrow D_{h, x} \lambda_{1}=\lambda_{1} \frac{(1+h)^{D_{h, x} m}-1}{h}=-\frac{1}{2 h} \lambda_{1}
$$

Thus:

$$
\frac{(1+h)^{D_{h, x} m}-1}{h}=-\frac{1}{2 h} \rightarrow(1+h)^{D_{h, x} m}=\frac{1}{2} \rightarrow m=\log _{1+h}\left(\frac{1}{2}\right) x
$$

Thus:

$$
\lambda_{1}=\left(\frac{1}{2}\right)^{\frac{x}{h}} \rightarrow 2^{-\frac{x}{h}}, \lambda_{2}=\frac{1}{2} 2^{-\frac{x}{h}}
$$

From here it follows:

$$
\left(\frac{1}{2}\right)^{\frac{x}{h}} q=D_{h, x}^{-1}\left[2^{-\frac{x+h}{h}} \log _{1+h} h b(x)\right]
$$

And therefore

$$
q=2^{\frac{x}{h}} D_{h, x}^{-1}\left[2^{-\frac{x+h}{h}} \log _{1+h} h b(x)\right]
$$

And from here we find that:

$$
u=(1+h)^{\frac{q}{h}} \rightarrow u=(1+h)^{\frac{1}{h} 2^{\frac{x}{h} D_{h, x}^{-1}}\left[2^{-\frac{x+h}{h}} \log _{1+h} h b(x)\right]}
$$

We now solve the Omega equation which was:

$$
0=\left(k+a_{1}\right) \Omega+(k h-1) D_{h, x} \Omega
$$

Meaning:

$$
0=\left(-\frac{1}{h}+a_{1}\right) \Omega+(-1-1) D_{h, x} \Omega
$$

Which breaks down to

$$
0=\left(a_{1}-\frac{1}{h}\right) \Omega-2 D_{h, x} \Omega
$$

We can solve this like any classical difference equation by resolving terms:

$$
0=-\frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \Omega+D_{h, x} \Omega
$$

Now we use the technique of dual-integration factors. We declare that

$$
D_{h, x}\left(\lambda_{1} \Omega\right)=-\frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \Omega \lambda_{2}+D_{h, x} \Omega \lambda_{2}
$$

From which it arises that

$$
D_{h, x} \lambda_{1} \Omega+\lambda_{1} D_{h, x} \Omega+h D_{h, x} \lambda_{1} D_{h, x} \Omega=-\frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \Omega \lambda_{2}+D_{h, x} \Omega \lambda_{2}
$$

Thus we create the system

$$
\left\{\begin{array}{c}
\lambda_{1}+h D_{h, x} \lambda_{1}=\lambda_{2} \\
D_{h, x} \lambda_{1}=-\frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \lambda_{2}
\end{array}\right\}
$$

From here it becomes clear that

$$
\lambda_{1}-h \frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \lambda_{2}=\lambda_{2}
$$

Which yields

$$
\left(1+\frac{h}{2}\left(a_{1}-\frac{1}{h}\right)\right) \lambda_{2}=\lambda_{1} \rightarrow \lambda_{1}=\left(1+\frac{a_{1} h^{2}-h}{2 h}\right) \lambda_{2}
$$

And yet

$$
D_{h, x} \lambda_{1}=-\frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \lambda_{2}
$$

Therefore

$$
D_{h, x} \lambda_{1}=-\frac{\frac{1}{2}\left(a_{1}-\frac{1}{h}\right)}{\left(1+\frac{a_{1} h^{2}-h}{2 h}\right)} \lambda_{1}
$$

To avoid ballooning our formula we simplify here and then solve this as a classical example of the exponential.

$$
D_{h, x} \lambda_{1}=-\frac{\frac{\left(a_{1} h-1\right)}{2 h}}{\left(\frac{2 h+a_{1} h^{2}-h}{2 h}\right)} \lambda_{1} \rightarrow D_{h, x} \lambda_{1}=\frac{a_{1} h-1}{a_{1} h^{2}+h} \lambda_{1}
$$

Now consider the function

$$
\lambda_{1}(x)=(1+h)^{\frac{y}{h}}
$$

For a function y. Then it trivially follows that

$$
D_{h, x} \lambda_{1}=\lambda_{1}\left(\frac{(1+h)^{D_{h, x} y}-1}{h}\right)=\frac{a_{1} h-1}{a_{1} h^{2}+h} \lambda_{1}
$$

And therefore:

$$
y=D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]
$$

We thus recall that:

$$
0=-\frac{1}{2}\left(a_{1}-\frac{1}{h}\right) \Omega+D_{h, x} \Omega
$$

Multiply both sides by the given λ_{2} that can be derived from our λ_{1} and then integrate to conclude

$$
C_{1}=\Omega(1+\mathrm{h})^{\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}
$$

And therefore

$$
C_{1}(1+\mathrm{h})^{-\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}=\Omega
$$

Now recall the original:

$$
D_{h, x} f=a_{1} f+a_{2} f^{2}
$$

We made the substitution:

$$
f=\Omega u
$$

To yield:

$$
D_{h, x} u=-\kappa u+\frac{a_{2}}{\Omega+D_{h, x} \Omega} u^{2}
$$

We note that this yields

$$
D_{h, x} u=-\frac{1}{h} u+b_{0} u^{2}
$$

Whereas:

$$
b_{0}=\frac{a_{2}}{C_{1}(1+\mathrm{h})^{-\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}+C_{1}(1+\mathrm{h})^{-\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}\left(\frac{1-a_{1} h}{2 a_{1} h^{2}}\right)}
$$

Which (due to the generality of the constant C) gives us

$$
b_{0}=\frac{C_{1}(1+\mathrm{h})^{\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]} a_{2}}{1+\frac{1-a_{1} h}{2 a_{1} h^{2}}} \rightarrow b_{0}=\frac{a_{1} a_{2} C_{1}(1+\mathrm{h})^{\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}}{2 a_{1} h^{2}-a_{1} h+1}
$$

Note that we already have that:

$$
u=(1+h)^{\frac{1}{2} 2^{\frac{x}{h}} D_{h, x}^{-1}\left[2^{-\frac{x+h}{h}} \log _{1+h} h b(x)\right]}
$$

Therefore:

$$
u=(1+h)^{\frac{1}{h^{2} h} D_{h, x}^{-1}}\left[-2-\frac{x+h}{h} \log _{1+h}\left(\frac{\left.a_{1} a_{2} C_{1}(1+\mathrm{h})^{\frac{1}{h^{D}} D_{h, x}^{-1}} \log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}{2 h^{2}-a_{1} h+1}\right)\right]
$$

And therefore since:

$$
f=\Omega u
$$

We have

$$
f=C_{1}(1+\mathrm{h})^{-\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}(1+h)^{\left.\frac{1}{h}\right)^{\frac{x}{h} D_{h, x}^{-1}}\left[2^{-\frac{x+h}{h}} \log _{1+h}\left(\frac{a_{1} a_{2} C_{1}(1+\mathrm{h})^{\frac{1}{h} D_{n, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}}{2 a_{1} h^{2}-a_{1} h+1}\right)\right]}
$$

As the general solution to the constant-depressed: Riccati like equation. We now consider the radical formula:

$$
\begin{gathered}
D_{h, x} f=a_{1} f+a_{2} f^{2} \\
0=-f(x+h)+\left(1+h a_{1}\right) f+h a_{2} f^{2} \\
f=-\frac{1+h a_{1}}{2 h a_{2}}+\frac{1}{2 h a_{2}} \sqrt{\left(1+h a_{1}\right)^{2}+4 h a_{2} f(x+h)}
\end{gathered}
$$

This yields:

$$
\begin{aligned}
& 2 h a_{2} f+1+h a_{1} \\
& =\sqrt{\left(1+h a_{1}\right)^{2}+4 h a_{2}\left(-\frac{1+h a_{1}(x+h)}{2 h a_{2}(x+h)}+\frac{1}{2 h a_{2}(x+h)} \sqrt{\left(1+h a_{1}(x+h)\right)^{2}+4 h a_{2}(x+h) \sqrt{\ldots}}\right.}
\end{aligned}
$$

In general if we have :

$$
\sqrt{a(x)+b(x) \sqrt{a(x+h)+b(x+h) \sqrt{a(x+2 h)+b(x+2 h) \sqrt{\ldots}}}}
$$

We have that

$$
\begin{gathered}
b(x)=\frac{1}{2 h a_{2}(x+h)} \\
a(x)=\left(1+h a_{1}\right)^{2}-4 h a_{2} \frac{1+h a_{1}(x+h)}{2 h a_{2}(x+h)}
\end{gathered}
$$

We can solve for a_{1}, a_{2} in terms of a and b

$$
\begin{gathered}
a_{2}(x+h)=\frac{1}{2 h b(x)} \\
D_{h, x} a_{2}+\frac{1}{h} a_{2}=\frac{1}{2 h^{2} b(x)}
\end{gathered}
$$

And now we can resolve that using coupled integration factors

$$
\begin{gathered}
\left\{\begin{array}{c}
\lambda_{1}+D_{h, x} \lambda_{1}=\lambda_{2} \\
D_{h, x} \lambda_{1}=\frac{1}{h} \lambda_{2}
\end{array}\right\} \\
\lambda_{1}=\left(1-\frac{1}{h}\right) \lambda_{2} \\
D_{h, x} \lambda_{1}=\frac{1}{h\left(1-\frac{1}{h}\right)} \lambda_{1}=\frac{1}{h-1} \lambda_{1}
\end{gathered}
$$

Naturally we assume exponential form:

$$
\lambda_{1}=(1+h)^{\frac{w(x)}{h}} \rightarrow D_{h, x} \lambda_{1}=\lambda_{1}\left(\frac{(1+h)^{D_{h, x} w}-1}{h}\right)=\frac{1}{h-1} \lambda_{1} \rightarrow
$$

$$
\begin{gathered}
w=D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 h-1}{h-1}\right)\right]=\log _{1+h}\left(\frac{2 h-1}{h-1}\right) x \\
\lambda_{1}=\left(\frac{2 h-1}{h-1}\right)^{\frac{x}{h}}, \lambda_{2}=\frac{h-1}{h}\left(\frac{2 h-1}{h-1}\right)^{\frac{x}{h}}
\end{gathered}
$$

Thus it follows:

$$
\begin{gathered}
a_{2}\left(\frac{2 h-1}{h-1}\right)^{\frac{x}{h}}=D_{h, x}^{-1}\left[\frac{h-1}{2 h^{3} b(x)}\left(\frac{2 h-1}{h-1}\right)^{\frac{x}{h}}\right]+C_{2} \\
a_{2}=\left(\frac{2 h-1}{h-1}\right)^{-\frac{x}{h}}\left(D_{h, x}^{-1}\left[\frac{h-1}{2 h^{3} b(x)}\left(\frac{2 h-1}{h-1}\right)^{\frac{x}{h}}\right]+C_{2}\right)
\end{gathered}
$$

Now we return to the second half of the original challenge:

$$
a(x)=\left(1+h a_{1}\right)^{2}-4 h a_{2} \frac{1+h a_{1}(x+h)}{2 h a_{2}(x+h)}
$$

Which simplifies to:

$$
a(x)=\left(1+h a_{1}\right)^{2}-2\left(1+h a_{1}(x+h)\right)
$$

Yielding

$$
\begin{gathered}
a(x)=1+2 h a_{1}(x)+a_{1}^{2}-2-2 h a_{1}(x+h) \\
a(x)+1=2 h a_{1}(x)-2 h a_{1}(x+h)+a_{1}^{2} \\
1+a(x)=-2 h^{2} D_{h, x} a_{1}+a_{1}^{2} \\
D_{h, x} a_{1}=\frac{1+a(x)}{2 h^{2}}+\frac{1}{2 h^{2}} a_{1}^{2}
\end{gathered}
$$

This is not yet something we know how to solve, but if a single test solution:

$$
\theta(x)
$$

We can reduce this equation to something we do know how to solve.

$$
\begin{gathered}
a_{1}=E+\theta \rightarrow \\
D_{h, x} E+D_{h, x} \theta=\frac{1+a(x)}{2 h^{2}}+\frac{1}{2 h^{2}}\left(E^{2}+2 E \theta+\theta^{2}\right) \\
D_{h, x} E=\frac{\theta}{2} E+\frac{1}{2 h^{2}} E^{2}
\end{gathered}
$$

This has the solution we generated:

Therefore:

$$
a_{1}=\theta+C_{3}(1+\mathrm{h})^{-\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{\theta h}{\frac{\theta}{2} h+1}\right)\right]}(1+h)^{\frac{1}{h} 2^{\frac{x}{h}} D_{h, x}^{-1}}\left[2^{\left.-\frac{x+h}{h} \log _{1+h}\left(\frac{\theta C_{3}(1+h)^{\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{\theta h}{\frac{\theta}{2} h+1}\right)\right]}}{\theta h^{2}-\frac{\theta}{2} h+1}\right)\right]}\right]
$$

And we already derived

$$
a_{2}=\left(\frac{2 h-1}{h-1}\right)^{-\frac{x}{h}}\left(D_{h, x}^{-1}\left[\frac{h-1}{2 h^{3} b(x)}\left(\frac{2 h-1}{h-1}\right)^{\frac{x}{h}}\right]+C_{2}\right)
$$

Furthermore let:

Then:

$$
2 h a_{2} f+1+h a_{1}
$$

Is the solution to the infinite radical, once the constants have been appropriate set to account for the radical's roots of unities. Note that if:

$$
\begin{gathered}
a(x)=-1 \text { then it follows that } \\
a_{1}=\lim _{\substack{a_{1} \rightarrow 0 \\
a_{2} \rightarrow \frac{1}{2 h^{2}}}} C_{1}(1+\mathrm{h})^{-\frac{1}{h} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}(1+h)^{\frac{1}{h^{2}} 2 D_{h, x}^{n}\left[2^{-1}\left[-\frac{x+h}{h} \log _{1+h}\left(\frac{a_{1} a_{2} C_{1}(1+\mathrm{h})^{\frac{1}{h}} D_{h, x}^{-1}\left[\log _{1+h}\left(\frac{2 a_{1} h}{a_{1} h+1}\right)\right]}{2 a_{1} h^{2}-a_{1} h+1}\right)\right]\right.}
\end{gathered}
$$

And thus we have a closed form.
Furthermore note that:

$$
D_{h, x} f=a_{1} f+a_{2} f^{2}
$$

Can be split up:

$$
D u+D v=a_{1} u+a_{1} v+a_{2} u^{2}+2 a_{2} u v+a_{2} v^{2}
$$

Such that:

$$
v=-\frac{a_{1}}{2 a_{2}}
$$

Yields:

$$
D u=\left(a_{1} v+a_{2} v^{2}-D v\right)+a_{2} u^{2}
$$

Which itself shows a mapping exists from our class to the second, finding the inverse mapping is the next challenge, whose completion will resolve this area and ready us for braver generalizations.

