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This paper posits that ‘Gravitational Flow’ permeates the Universe, and all observed time di-

lation is a result of movement relative to this flow.  The speed of the flow at any given location is 
simply the corresponding escape velocity.  So time dilation can be calculated from escape veloci-
ties.  The procedure is illustrated using three distinct examples: 1) The time dilation setting re-
quired by the atomic clocks aboard the GPS satellites orbiting Earth; 2) The Shapiro delay experi-
enced by a ray of light as it passes very near the Sun; 3) The portion of the perihelion precession of 
Mercury’s orbit that is due to time dilation, often called ‘anomalous precession’.  Also included are 
proposals for four distinct experiments, each of which will demonstrate the effects of the flow. 

 
 
Introduction 

The nature of gravity has long been a topic of interest and re-
search.  Theories regarding it have varied over time.  Newton 
described gravity as an attractive force. Einstein described it as a 
curvature of space-time.  This paper describes gravity is a flow. 

Every particle of matter has a flow that terminates in itself.  
This flow spans the universe, and wherever it accelerates 
through any other particle of matter, it exerts a pressure - like a 
drag.  However, the flow itself is unaffected by any matter 
through which it accelerates.  The amount of pressure exerted is 
directly proportional to the amount of actual matter in matter; 
i.e., the nuclei and electrons in atoms.  Measurements of the 
amount of empty space surrounding atomic nuclei indicate just 
how minuscule the actual amount of matter is in physical matter. 

When Newton formulated the laws of gravitation, he used a 
gravitational constant G .  Over a century later, Henry Caven-
dish constructed a device to measure G .  Over a century after 
that, Ernest Rutherford devised an experiment that revealed the 
structure of an atom.  The measured value of G  corresponds 
directly with structure of the atom - or, more specifically, with 
the minute proportion of the nuclei (and electrons) in all atoms, 
molecules, compounds and masses.  In other words, it is a repre-
sentation of the mean density of all physical matter in the uni-
verse - excepting singularities.  The effect that gravitational flow 
has on matter fits this understanding perfectly.  The gravitational 
flow model also fits perfectly with the very subtle gravitational 
differences accounted for by time dilation, and since an account-
ing of time dilation is requisite in any gravitational model, the 
examples in this paper detail how the concepts of gravitational 
flow can be used to accurately calculate it. 

Telling Behaviors of Light 
Light has many properties, one of which is the perfectly 

characteristic behavior of light as it passes through various sub-
stances, and another of which is how it behaves when it transi-
tions between them.  For example, the speed of light ( c ) in the 
vacuum of space is roughly three million meters per second[1], 
and in glass it's roughly two million meters per second[2].  When 

light transitions from the vacuum of space to glass, it doesn't 
"slow down." Rather, it instantaneously assumes the "supported 
speed" of glass, as given by its refractive index.  Likewise, when 
it transitions back to the vacuum of space, it does so instantane-
ously.  This characteristic behavior is perfectly consistent.  Light 
could transition between the vacuum of space to glass, to water, 
back to glass, to oil, to diamond, and back to the vacuum of 
space, and it would travel at the precise ‘supported speed’ of 
each substance along the way, and each transition would be in-
stantaneous.  This perfectly consistent behavior begs the ques-
tions: If there isn't anything similarly limiting the speed of light 
in the vacuum of empty space, then why doesn't it just travel 
from any point in the universe to any other point instantaneous-
ly?  Why is its speed so similarly and characteristically limited, 
as it is when passing through various substances? 

Gravitational flow limits the speed of light in the vacuum of 
empty space, similar to how it's limited when passing through 
any of the substances previously mentioned.  Additionally, the 
flow can move and accelerate, and it does so in proximity to 
gravitationally significant masses.  For a symmetrically spherical 
mass, the direction of the prevailing flow is directly toward the 
center of the mass.  The speed of the flow at the surface of the 
mass is given by the escape velocity at the surface radius.  The 
speed of the flow at any given altitude above the surface is simp-
ly the escape velocity at that altitude, as measured from the cen-
ter of the mass. 

This coincides perfectly with the behavior of light in proximi-
ty to black holes.  At the event horizon, the escape velocity is 
equal to the vacuum speed of light ( c ).  As such, the flow is 
heading inward at that speed.  And since the velocity of light is 
constrained/limited by the flow, light cannot escape at (or inte-
rior to) the event horizon. 

To understand how the flow affects light, consider two small 
space ships (A and B) traveling in series towards a supposedly 
stationary space station.  Also consider what might best be de-
scribed as an aquarium ship whose height and width are rela-
tively small (perhaps 10 meters in each direction), but whose 
length is enormous (on the order of tens of thousands of kilome-
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ters), also traveling towards the space station, but on a path per-
pendicular to the path of ships A and B.  (See Fig. 1) 

 

Figure 1.  Backward Light Travel before sending signal.   

The space station is located at the center of the diagram, and 
is just a few meters above intersecting paths of the three ships.  
From there, it sees the distance between itself and ships A and B 
decreasing at a rate of 0.9 c .  At a right angle to the path of ships 
A and B, it also sees the distance between itself and the aquarium 
ship decreasing at a rate of 0.9 c .  Ship A wants to send a signal 
to ship B, but it only has a laser-like, directional broadcasting 
antenna facing out of its left/port side.  When ship A passes di-
rectly in front of the oncoming aquarium ship (and under the 
space station), it sends the signal.  (See Fig. 2) 
 

 
Figure 2.  Backward Light Travel - Sending Signal. 

Since light is unaffected by the motion of its source, the signal 
heads straight into the leading end of the oncoming aquarium 
ship.  As the signal enters the water, its speed instantly changes 
to roughly three-fourths the vacuum speed of light (approxi-
mately 0.75 c ).[2]  However, since the water itself is traveling at 
0.9 c  in the exact opposite direction to the heading of the signal, 
the signal is actually moving ‘backward’ at 0.15 c .  (See Fig. 3) 
 

 
Figure 3: Backward Light Travel - Signal Traveling. 

Once the aquarium ship passes out of the path of ship B, the 
signal passes out of its trailing end, whereupon the signal's ve-
locity instantaneously resumes its original vacuum speed (or 
1.0c).  Ship B then passes directly behind the aquarium ship and 
receives the signal (which arrived from its right/starboard side).  
(See Fig. 4.) 

 
Figure 4: Backward Light Travel - Receiving Signal. 

Just as the water limited the speed of the signal, and the 
movement of the water was faster than the speed of the signal 
through the water, causing the signal to actually travel ‘back-
ward’, the speed of the flow interior to the event horizon of a 
black hole causes even outbound light to travel ‘backward’ to-
ward the singularity. 

Gravitational Flow Applications 
The following Sections present gravitational flow solutions 

for three relativistic scenarios where the amounts of time dilation 
are already known.  The laws applied are based on the follow-
ing: 1) The speed of light (in the vacuum of space) is constant 
relative to the flow; 2) Objects moving relative to the flow experi-
ence time dilation.  The solutions obtained show how gravita-
tional flow accurately accounts for the time dilations.   

GPS System Time Dilation 

Both special and general relativity were used to calculate the 
total time dilation required for the GPS satellites orbiting 
Earth.[3]  Based on their orbital velocity, special relativity indi-
cated that the clocks aboard the satellites would run slower than 
ground based clocks by about 7 microseconds per day.[3] 

Based on their altitude, general relativity indicated that their 
clocks would run faster than ground-based clocks by about 45 
microseconds per day.[3]  The net result was that their clocks 
needed to be adjusted prior to launch and orbital insertion so 
that they would run slower than ground based clocks, by about 
38 microseconds per day. 

The following is a solution for calculating the time dilation of 
these satellites using escape velocities. 

Set-up Data 

Gravitational Constant ( G ): 11 2 26.674 10 N-m / kg  [4] 

Earth mass ( EM ): 24 25.9736 10 kg  [5] 
Mean Earth Radius ( Emr ): 6,371 km [5] 
Equatorial Earth Radius ( Eer ): 6,378.1 km [5] 
Light Speed ( c ): 299,792,458 m/s [1] 
Satellite Altitude ( A ): 20,200 km [6] 
Orbital Period ( P ): 43,082.0455 seconds (1⁄2 sidereal day = 11 
hrs, 58 mins, 2.0455 secs) [7]. 
 

Solution 

Calculate the escape velocity at the orbital altitude of the sat-
ellites ( escv ): 

 esc E Em2 / ( ) 5,478 m/sv GM r A    (1) 
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Calculate the orbital velocity of the satellites ( orbv ): 

 orb Em2 ( ) / 3,875 m/sv r A P    (2) 

Apply the Pythagorean theorem to obtain their actual velocities 
relative to the flow ( actv ): 

 2 2
act esc orb 6,710 m/sv v v    (3) 

Calculate the number of seconds of orbital time dilation ( orbt ): 

 2 2 10
orb act1/ 1 / 1 2.505 10 sect v c        (4) 

Calculate the ground escape velocity ( gescv ): 

 gesc E Ee2 / 11,181 m/sv GM r   (5) 

Calculate the rotational velocity of Earth’s surface where the 
ground-based clocks are located. ( surfv ).  It is zero at the poles, 
and reaches a maximum at the equator; this solution assumes an 
equatorial locale: 

 surf Ee / 465 m/sv r P   (6) 

Apply the Pythagorean theorem to obtain the actual ground ve-
locity relative to the flow ( gactv ): 

 2 2
gact gesc surf 11,191 m/sv v v    (7) 

Calculate the number of seconds of ground time dilation ( grt ): 

 2 2 10
gr gact1/ 1 / 1 6.967 10 sect v c        (8) 

Calculate the time dilation difference per sidereal day: 

   5
gr orb2 3.845 10 secP t t      (9) 

The time dilation solution works because light rides along 
with the gravitational flow toward gravitating masses.  The rate 
of the flow at any given distance above the surface of a mass is 
the corresponding escape velocity ( escv ) given by: 

 esc 2 /v GM r  (10) 

where G  is the gravitational constant, M  is the mass of the 
body, and r  is measured from its center. 

The flow is also effectual in the interior of spherical masses 
like stars and planets.  Escape velocities ( escv ) for depths below 
the surface of a mass (i.e., for radii less than the surface radius) 
are only dependent on the portion of the mass interior to the 
chosen radius ( ir ) as given by: 

                       

Accordingly, as the flow moves inward from the surface, its 
velocity decreases, and ultimately reaches zero (0) at the center 
of the mass.  Relative interior and exterior escape velocities (flow 
rates) for a spherical gravitating mass (Earth in this case) are 
shown in Fig. 5. 

 
Figure 5.  Spherical Mass Flow Rates. 

The GPS time dilation solution given above accounts for the 
gravitational acceleration of the flow at the altitude of the satel-
lites, derived from the escape velocity, and the transverse motion 
of the satellites through the flow along their orbital path.  These 
two effects are combined to obtain a composite value for the sat-
ellites.  A simple analogy is the scroll of paper on a player piano.  
(See Fig. 6) 

 
Figure 6: Piano Player Scroll Analogy. 

If a pen is used to slowly draw a straight, horizontal line (at a 
steady rate) across the paper while the paper is moving down-
ward, the resulting line would be diagonal.  The paper moving 
downward represents the gravitational flow, and the motion of 
the pen moving across the paper represents the orbital path of 
the satellites.  The resulting diagonal line represents the actual 
path (and distance) traveled by the satellites relative to the flow.  
This is why the Pythagorean theorem is used in Eq. (3) of the 
solution. 

The piano scroll analogy also applies to the ground based 
clocks, which is why the calculation steps for them are identical 
to those for the satellites.  The principle of using escape velocities 
to calculate time dilation also applies in deep space, far from any 

3 4
esc 2 /iv GMr r   (11) 
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gravitating masses.  However, in such locales the flow is glacial 
(i.e., very near zero), so their effect becomes negligible. 

The Shapiro Delay 

In the 1960’s, Irwin Shapiro conceived and conducted a test 
of general relativity relating to the delay of a ray of light as it 
passed near the Sun.[8]  The treatment herein applies the princi-
ples of gravitational flow to Shapiro's experiment. 

Consider a space probe flying along the path of Earth's orbit 
on the far side of the Sun (as seen from Earth).  The orbital posi-
tion of the probe with respect to Sun and Earth would require 
that a ray of light sent from Earth to the probe (and back) pass 
near the surface of the Sun.  Since the two legs of the trip are 
mirror images of each other, only one is addressed herein.  Fig. 7 
shows the general layout of the test.  Some elements of the Figure 
are exaggerated for readability. 
 

 
Figure 7.  Shapiro Delay Test Setup. 

As the light commences its journey from the probe to Earth, 
gravitational flow towards the Sun begins to increase, causing 
the speed of the light to equally increase (relative to the Sun) as 
well.  The closer the light gets to the Sun, the faster the flow, so 
the faster the light's speed, until about the 45 degree mark (along 
the path of the light relative to the center of the Sun), where the 
‘tailwind’ becomes more of a crosswind.  (See Fig. 8)  From this 
point, the light's forward velocity begins to decline as the flow is 
moving more transverse to it.  At the 90 degree mark (as the light 
makes its closest approach to the Sun), it's a full on crosswind, 
and the light continues to slow as it starts to experience a little bit 
of a headwind.  By about the 135 degree mark, the crosswind 
becomes more of a headwind, but the rate of this headwind di-
minishes as the light moves further away from the Sun.  As it 
does, its speed increases. 

 

Figure 8.  Flow-affected speed of light. 

Although the light picks up speed from the tailwind on its 
way in, and then loses speed due to the headwind on the way 
out, these two segments of the journey do not simply cancel each 
other out.  The reason is that although the sum of both the 
headwind and tailwind do equal each other, the light spends 
more time fighting through the headwind, than it spends being 
boosted by the tailwind.  Consequently, the light ray is delayed, 
and the total travel time is therefore increased. 

Using general relativity, Shapiro showed that the maximum 
delay a ray of light would experience passing near the surface of 
the Sun would be 240 microseconds for a round trip (or 120 mi-
croseconds in each direction).[9]  Of course, with the intense 
amount of interference that close to the Sun's surface, it would be 
extremely unlikely that a discernible signal would make it 
through.  However, at an altitude of 1.6 solar radii, a recogniza-
ble signal can get through.  At that altitude, Shapiro showed that 
general relativity predicts a one way delay of 100 microsec-
onds.[8]  Shapiro's testing later confirmed the 100 microsecond 
delay for each leg of the round trip.[10] 

Computer software was used to perform the gravitational 
flow based calculations for the Shapiro delay, and to run simula-
tions thereof.  The simulations agreed with a maximum 240 mi-
crosecond round trip delay when grazing the surface of the Sun, 
and duplicated the 100 microsecond one way delay at 1.6 solar 
radii above Sun's surface. 

Shapiro Delay Computer Simulation Methodology 

The software for the computer simulations was designed to 
mimic and account for the motions of the flow along the path 
followed by the ray of light.  At a distance of roughly 150,000,000 
km away from the Sun (i.e., the orbit distance of Earth), the probe 
sends a signal that will pass near the Sun on its way to Earth.  As 
the light ray is expected to pass by the Sun at 1.6 solar radii 
above the surface, its initial trajectory is at a slight angle relative 
to the Sun's center; i.e., the direction to where the flow is head-
ing. 

The software split the overall trip into tens of thousands of 
small segments, minutely calculating and summing the effects of 
the flow throughout the trip.  In the early part of the trip, the 
flow rate is relatively low, so the amount of heading deviation 
experienced by the light ray is minimal.  (See Fig. 9.)  Note that 
some of the portions and angles depicted in Figs. 9-12 are exag-
gerated for clarity.) 

 
Figure 9.  Shapiro Delay Test Methodology - Early Segment. 

Figure 10 shows a small series of the segments depicted in 
Fig. 9.  Its purpose is to imbue a sense of the cyclical processing 
nature that the software utilized in performing the billions of 
minutely detailed trigonometric calculations when executing the 
simulations.   

 
Figure 10.  Shapiro Delay Test Methodology - Early Segment Series 
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As the light ray nears the Sun, the rate of the flow is much 
greater, and its relative direction is much more transverse.  (See 
Fig. 11) 

 
Figure 11: Shapiro Delay Test Methodology - Early-mid Segment. 

After the light ray passes the Sun and begins to move away, 
the flow begins to work against it, retarding its progress.  (See 
Fig. 12) 

 

Figure 12: Shapiro Delay Test Methodology - Late-mid Segment. 

As the light ray approaches Earth, the flow becomes much 
more of a direct headwind.  However, because of being so far 
from the Sun, the rate of the flow is significantly reduced, caus-
ing the rate of progress made by the light ray to increase.  (See 
Fig. 13) 

 

Figure 13: Shapiro Delay Test Methodology - Late Segment 

The calculated data produced by the simulations provided 
crucial insights into just how dramatic the effects of the flow are 
regarding light.  While the paths of the light rays for the Newto-
nian and general relativity predictions are both straight lines, 
each with a very slight bend in the middle, the simulation data 
show a very different path for the flow affected light ray.  Addi-
tionally, while the inbound (toward the Sun) and outbound 
(away from the Sun) legs of both the Newtonian and general 
relativity predicated paths are symmetric mirror images of each 
other, the inbound and outbound legs of the flow-affected path 
are rather asymmetric.  This is not to say that the appearance of 
the path for an Earth-bound observer is in any respect different 

from the general relativity predicted path.  Rather, they would 
seem identical.  After all, all that is known by an observer (as the 
light ray enters his eye), is the tangent of the line (or curve) at 
that point.  The tangent only provides a perceived path, and/or 
point of origin.  The actual path is not necessarily the same, espe-
cially when vast distances are involved. 

Fig. 14 shows a graph of the path followed by the light ray - 
from the space probe to Earth.  The graph is compressed hori-
zontally (from left to right), that's why the Sun is depicted as a 
thin vertical line. 

General relativity predicts a deflection of 1.75 seconds of 
arc.[11]  Even over the roughly 300,000,000 kilometer distance, 
the total height above the straight line at the midpoint between 
the space probe and Earth is only about 1,300 (thirteen hundred) 
kilometers, while the apogee of the flow affected path (per the 
simulation data) is more than 8,700 (eighty-seven hundred) kil-
ometers. 

The height of the flow-affected path depicted in Fig. 14 is ex-
aggerated by a factor of 5 for emphasis.  The steep dive at the 
midpoint of the path is due to the dramatically increased rate of 
the flow near the Sun. 
 

 
Figure 14: Shapiro Delay - Flow Affected Light Path 

The simulation data also shows that of the total 100 micro-
second delay, only 10 microseconds are actually due to the light 
ray spending more time fighting against the headwind of the 
flow on its way out from the Sun, as opposed to the time spent 
being boosted by the flow on the way in.  The other 90 microsec-
onds are purely a result of the longer path traveled. 

The Perihelion Precession of Mercury’s Orbit 

For several decades astronomers were perplexed by a portion 
of the perihelion precession of Mercury’s orbit for which they 
could not account.[12]  Using General Relativity Theory (GRT), 
Einstein was able to accurately calculate it - as it was due to time 
dilation.[12]  It turns out that the orbits of all celestial bodies in 
the solar system precess, and at least a portion of all those pre-
cessions is similarly due to time dilation. 

Gravitational Flow also accurately accounts for the time di-
lated portions of the orbits of all celestial bodies in the solar sys-
tem.  For perfectly circular orbits, the method for calculating the 
time dilation is largely synonymous with that of the GPS satel-
lites as given in Eqs. (1-4).  The sole difference for elliptical orbits 
has to do with the fact that the altitude (distance from the Sun) 
increases during the outbound half of the orbit - from perihelion 
to aphelion, and then decreases during the inbound half of the 
orbit - from aphelion to perihelion.  Therefore, a slightly modi-
fied piano scroll analogy is needed.  Fig. 15 depicts a radial view 
of how a planet in an elliptical orbit increases its altitude (dis-
tance from the Sun) during a one-second interval as it travels 
along the outbound half of its orbit. 
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Figure 15: Radial Orbital Ascension. 

For elliptical orbits, the flow rates and other parameters are 
constantly changing throughout the orbital period.  Therefore, 
computer software was used to model Mercury’s orbit, and to 
divide it into equally sized segments using Kepler’s 2nd law of 
planetary motion.[13]  During the orbital simulation, the soft-
ware calculated and summed the time dilation (for both the out-
bound and inbound halves of the orbit) from each of the more 
that 7.6 million one-second time intervals.  The segments were 
‘rectangularized’ similar to those of the GPS satellites presented 
earlier.  Figures 16 and 17 use this format for the outbound and 
inbound segments respectively.  Note: Fig. 16 is the rectangular-
ized equivalent of the radial view shown in Fig. 15. 

 
Figure 16: Outbound Flow Path. 

 
Figure 17: Inbound Flow Path. 

Just as the higher altitude radial segment in Fig. 15 is longer 
than the lower altitude one, the higher altitude rectangularized 
segments in Figs. 16 and 17 are also longer.  In Fig. 16, the orbital 
path of the planet initiates at the ‘right’ end of the narrower, 
lower altitude segment, and concludes at the ‘left’ end of the 
wider, higher altitude segment.  Accordingly, the line represent-
ing the orbital path of the planet does not span the entire width 
of the higher altitude segment, a key point that is not as directly 
elucidated in the radial view of Fig. 15.  Fig. 17 shows the in-
bound equivalent of Fig. 16.  The key difference between the two 
lies in the lengths of the ‘actual path’ lines, which are the respec-
tive distances traveled relative to the flow.  The outbound ‘actual 
path’ line (in Fig. 16) is longer because it passes through more of 
the flow as the planet moves further away from the Sun.  Con-
versely, the inbound ‘actual path’ line (in Fig. 17) is shorter be-
cause the planet moves with the flow as it approaches the Sun. 

When calculating the amount of time dilation for each one-
second interval, the software uses the escape velocity at the alti-
tude halfway between the starting and ending segment altitudes.  
It then employs the Pythagorean theorem (using both the ‘hori-
zontal’ distance traveled by the planet and the amount of ‘verti-
cal’ flow which passed through the planet during the interval) to 
calculate the actual amount of flow traversed.  For outbound 
intervals, it factors in the increase in altitude.  This is what makes 
the diagonal flow line longer in Fig. 16.  For inbound intervals, it 
factors in the decrease in altitude.  This is what makes the diago-
nal flow line shorter in Fig. 17.  The software then calculates the 
amount of time dilation based on the total amount of flow which 
passed through the planet during the interval.  The time dilation 
for all the outbound and inbound intervals are summed, result-
ing in values for the total outbound time dilation ( outt ), and the 
total inbound time dilation ( int ).  The total amount of time dila-
tion ( tott ) experienced by the planet during one orbit is then 
given by: 

 2
tot out in out in out in( ) / ( / )t t t t t t t             (12) 

The summed outbound and inbound time dilation values for 
Mercury are tott =0.163401 and int =0.127325.  Plugging these 
values into Eq. (12) yields a total orbital time dilation of tott    
0.80816 seconds, which is measured from the aphelion along the 
circumference of the perfect circle equivalent of Mercury’s ellip-
tical orbit. 

Elliptical orbits have several properties.  Examples are aphe-
lion, perihelion, major axis, minor axis, eccentricity, circumfer-
ence, area and period.  One of these properties is constant for 
any given orbit, regardless of any other factor: the aphelion.  In 
other words, if Mercury’s orbit was either more or less eccentric, 
it’s aphelion distance would still be exactly the same as it is now.  
And, if its orbit were a perfect circle, the radius thereof would 
match its current aphelion distance exactly. 

The number of arcseconds of precession in Mercury’s orbit 
during one Earth century is: 

 o tot / 43.22 arcsect n t a    (13) 
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where t  is the number of arcseconds in a full circle (or 360 × 60 × 
60), on  is the number of Mercury orbits in one Earth century (or 
365.256[14] × 100 ÷ 87.9691 [15]), tott  is the total orbital time dila-
tion given above (i.e., 0.80816), and a  is the number of seconds 
contained in a perfectly circular orbit whose radius is equal to 
Mercury’s aphelion distance. 

Use of the software was not limited to Mercury; it was also 
employed to calculate the precession of other celestial bodies.  
Table 1 in Appendix A contains the time dilation values for the 
four inner planets (Mercury, Venus, Earth and Mars) and the 
asteroid Icarus. 

Extensive analysis of the data from the software runs for the 
various planets revealed a pattern.  This pattern provided the 
key allowing orbital precession values to be calculated by hand, 
obviating the use of computer software. 

A Minimalist Method 

Every one-second interval throughout any elliptical orbit is 
unique with respect to the amount of time dilation experienced 
therein.  The orbital time dilation formula in Eq. (12) operates on 
the total amounts of time dilation experienced on both the out-
bound and inbound halves of the orbit.  As such, it follows that if 
the one-second intervals with the average amounts of time dila-
tion could be determined for each side of the orbit, then multi-
plying them by half the period (in terms of seconds) would yield 
the two values required in Eq. (12). 
 Figure 18 shows an elliptical orbit, along with its perfect cir-
cle equivalent as given by their shared aphelion distance.  The 
aphelion line extends vertically from the dot representing the 
Sun at the center of the diagram.  Just to the left of the aphelion 
line is another line (the ‘theta line’), also extending from the Sun, 
and separated from the aphelion line by a certain angle (  ). 

 
Figure 18: Average Time Dilation Points. 

Perpendicular to the theta line is the ‘tilt line’, which extends 
to the equivalent circular orbit at its ends, and which intersects 
the theta line at a certain distance from the Sun.  The distance is 
calculated by applying a factor (a percentage) to the aphelion 

distance.  The point where the theta line intersects the tilt line is 
the midpoint of the tilt line.  For various orbital eccentricities, 
table 2 in Appendix A lists the corresponding angles and factors.  
Polynomial curve fitting can be employed to determine the val-
ues pertaining to any eccentricity. 

There are two other lines in Fig. 18: the outbound and in-
bound return lines.  They start at either end of the tilt line, and 
extend back to the Sun.  The points where they intersect the ellip-
tical orbit are the locations of average time dilation. 

Because this minimalist method requires multiplying the av-
erage outbound and inbound time dilation factors by several 
millions (i.e., by half the orbital period in terms of seconds), the 
orbital parameters need to be extremely precise.  Given only the 
aphelion and perihelion distances, all other orbital parameters 
can be derived.  Unfortunately, the astronomical measurements 
for these values lack the requisite precision for the task at hand. 

Unlike most astronomical measurements, the period of a 
planet is one whose precision increases with time since it is the 
average of an ever-increasing number of continuous orbits.  The 
strict formulaic relationship between the period of a planet and 
its aphelion and perihelion distances (via the semi-major axis) 
can be used to check the measurements.  For example, the period 
of a planet (in terms of seconds) can be calculated from the aphe-
lion and perihelion distances, as given in Kepler’s third law: 

 2 34 /T r GM  (14) 

where r is the semi-major axis [i.e., (aphelion + perihelion) ÷ 2].  If 
the period thus calculated does not equal the observed period, 
then the measured distances aren’t merely inaccurate, they’re 
definitionally wrong. 

To understand how the successively continuous nature of 
planetary orbits allows their period measurements to be refined 
over time, consider a planetary orbit where the date and time of 
its perihelion occurrence is recorded, with an accuracy of plus or 
minus 62.0 seconds.  One orbit later, the date and time of the next 
perihelion occurrence is likewise recorded, also with an accuracy 
of plus or minus 62.0 seconds.  Thus, the period measurement 
has an overall accuracy of plus or minus 124 seconds.  However, 
since orbits are successively continuous, the date and time of 
each successive perihelion occurrence can be likewise recorded 
(all plus or minus 62.0 seconds) and measured against the first 
recorded date and time.  If the planet's period was 88 Earth days, 
then, after one Earth century (or 415 subject planet orbits), the 
period accuracy would be increased to plus or minus 124 ÷ 415 = 
0.3 seconds. 

In cases where the period calculated from the aphelion and 
perihelion doesn’t match the observed period, the incongruity 
can be remedied by adjusting the aphelion and perihelion dis-
tances by the ratio of the observed period divided by the calcu-
lated period.  Thereby, the aphelion and perihelion distances can 
be brought into conformity with the observed period.  All perihe-
lion precession computations herein employ these adjustments 
when the calculated periods don’t match the observed periods  

Through this minimalist method, the portion of Mercury’s 
orbital precession which is due to time dilation can be calculated 
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by first looking up (or determining via polynomial curve fitting) 
the angle of the theta line, and the distance factor for the tilt line 
(based on Mercury’s eccentricity) from Table 2 in Appendix A.  
Doing so yields an angle of 13.676040459 degrees, and a factor of 
0.1664724963. 

The following minimalist method solution utilizes boundary 
calculations.  See Appendix B for an explanation of this process. 
 
Set-up Data 
Mass of Sun M = 301.9891 10 [15]  

Gravitational constant G  116.6726 10 [4]  
Angle of tilt ( tlta ): 13.676040459 degrees  
Offset factor ( offf ): 0.1664724963  
Adjusted aphelion length ( adja )=69,820,150,084 meters  

Adjusted perihelion length ( adjp )=46,003,341,427 meters  

Orbit period (seconds) T = 7,600,530 seconds [15]  

Segment size (orbital area / T ) areas = 1,356,618,483,573,281 m2 
Speed of light c = 299,792,458 m/s [1] 

Solution 

Calculate the distance between the Sun and the tilt line ( l ): 

 adj off 11,623,134,677 metersl a f    (15) 

Calculate the angle between the outbound return line and the 
perihelion line (as measured counter-clockwise from the perihe-
lion) ( pouta ): 

 1
pout adj180 90 sin (1/ ) 113.25909 dega a       (16) 

Determine the distance between the Sun and the point of av-
erage outbound time dilation ( outl ).  This requires an iterative 
process that utilizes the principle that any point along an ellipti-
cal orbit can be located by using a triangle where two of its cor-
ners are located at the two foci, and the sum of the lengths of its 
sides is twice the aphelion distance.  The full iterative process 
won’t be shown here, but the result is: 

 out 60,364,706,689.6434 metersl   (17) 

Calculate the rectangularized width of this one-second seg-
ment ( outw ): 

 out area out2 / 44,947 metersw s l   (18) 

Use the Pythagorean theorem to calculate the length of the 
hypotenuse through half the width of this segment ( outh ): 

2 2
out area out( / 2) 60,364,706,689.6476 metersh s w    (19) 

Calculate the angle between the outbound return line and 
hypotenuse line ( outa ): 

 1 5
out out outsin ( / 2) / 2.133115 10 dega w h     (20) 

Calculate the lengths of the long ( 2l ) and short ( 3l ) sides of 
the segment.  These require the same iterative process used pre-
viously for outl  in Eq. (17): 

 2 60,364,711,311 metersl   (21) 

 3 60,364,702,069 metersl   (22) 

Calculate the width of the segment at the short side distance 
( 2w ): 
 2 3 out2 sin 44,947.4024 metersw l a     (23) 

Calculate the width of the segment at the long side distance 
( 3w ): 
 3 2 out2 sin 44,947.4092 metersw l a     (24) 

Calculate the length difference between the short and long 
sides of the segment ( 4l ).  This is the total increase in altitude 
(distance from the Sun) during the one-second interval: 

 4 2 3 9,242 metersl l l    (25) 

Calculate the escape velocity at the average distance for this 
interval ( escv ): 

 esc out2 / 66,313 m/sv GM l   (26) 

Calculate the total vertical flow passing through Mercury 
during the interval ( outf ): 

 out esc 4 75,555 m/sf v l    (27) 

Calculate the length of the actual diagonal path through the 
flow that Mercury travels during the interval ( 5l ): 

       22
5 out 2 3 2( ) / 2 87,914 metersl f w w w      (28) 

Calculate the amount of time dilation experienced by Mercu-
ry during this interval ( 2t ): 

 2 8
2 51/ 1 ( / ) 1 4.2997348 10 sect l c        

 (29) 

Calculate the total time dilation for the outbound half of the 
orbit ( outt ): 

 out 2 / 2 0.1634013178 sect t T     (30) 

For the inbound side of the orbit, calculate the angle between 
the inbound return line and the perihelion line (as measured 
clockwise from the perihelion) ( pina ):   

 1
pin adj180 90 sin (1/ ) 85.90648 dega a       (31) 
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Determine the distance between the Sun and the point of av-
erage outbound time dilation ( inl ).  This requires the same itera-
tive process used previously for outl  in Eq. (17): 

 in 54,660,663,374.3154 metersl   (32) 

Calculate the rectangularized width of this one-second seg-
ment ( inw ): 
 in area in2 / 49,638 metersw s l   (33) 

Use the Pythagorean theorem to calculate the length of the 
hypotenuse through half the width of this segment ( inh ): 

      22
in area in / 2 54,660,663,374.3210 metersh s w    (34) 

Calculate the angle between the inbound return line and hy-
potenuse line ( ina ): 

 1 5
in in insin ( / 2) / 2.601540 10 dega w h     (35) 

Calculate the lengths of the long ( 6l ) and short ( 7l ) sides of 
the segment.  These require the same iterative process used pre-
viously for outl  in Eq. (17): 

 6 54,660,668,391 metersl   (36) 

 7 54,660,658,357 metersl   (37) 

Calculate the width of the segment at the short side distance 
( 4w ): 
 4 7 in2 sin 49,637.8300 metersw l a     (38) 

Calculate the width of the segment at the long side distance 
( 5w ): 
 5 6 in2 sin 49,637.8391 metersw l a     (39) 

Calculate the length difference between the short and long 
sides of the segment ( 8l ).  This is the total decrease in altitude 
(distance from the Sun) during this one-second interval: 

 8 6 7 10,033 metersl l l    (40) 

Calculate the escape velocity at the average distance for this 
interval ( inv ): 

 in in2 / 69,687 m/sv GM l   (41) 

Calculate the total vertical flow passing through Mercury 
during the interval ( inf ): 

 in in 8 59,654 m/sf v l    (42) 

Calculate the length of the actual diagonal path through the 
flow that Mercury travels during the interval ( 9l ): 

  22
9 in 4 5 4( ) / 2 77,605 metersl f w w w      (43) 

Calculate the amount of time dilation experienced by Mercu-
ry during this interval ( 3t ): 

2 8
3 91/ 1 ( / ) 1 3.3504455 10 secondst l c        

 (44) 

Calculate the total time dilation for the inbound half of the 
orbit ( int ): 

 in 3 / 2 0.1273258093 secondst t T     (45) 

Plugging the total outbound ( outt ) and inbound ( int ) time 
dilation amounts into Eq. (12) yields 0.80816 seconds of time 
dilation per orbit of Mercury.  Converting to arcseconds per 
Earth century yields 43.22, as is given in Eq. (13). 

The process for calculating time dilation for perfectly circular 
orbits is virtually identical to that of the GPS satellites shown 
earlier.  Since there aren’t outbound and inbound sides to such 
orbits, any one-second interval can be chosen, as all intervals are 
identical.  The time dilation value for that one interval would 
then be multiplied by the number of seconds in the entire period 
of the planet, rather than just half, in order to produce the total 
value ( d ).  In such cases, Eq. (12) reduces to: 

 tot 2t d   (46) 

Accordingly, any planet in a perfectly circular orbit would al-
so experience precession due to time dilation.  However, since 
the orbit wouldn’t have a perihelion to use as a reference point, 
the precession just wouldn’t be observable. 

Behavior Near Black Holes 

At the event horizon of a black hole, the flow reaches the 
speed of light, and since the speed of light is constant relative to 
the flow, light emitted interior to the event horizon cannot es-
cape.  Additionally, the event horizon is not necessarily where 
time dilation reaches its zenith.  Neither are objects interior to the 
event horizon necessarily more time dilated than those exterior 
to it, as time dilation occurs only when objects are in motion rela-
tive to the local flow. 

As such, an object accelerated to 0.9c  relative to the flow, in 
the direction of a black hole, will cross the event horizon at 1.9c 
(relative to the singularity), but its time dilation will correspond 
exclusively to its 0.9c  speed relative to the flow.  And since all 
time dilation is measured with respect to motion relative to the 
flow, an object that is motionless relative to the flow will experi-
ence no time dilation as it falls into a black hole. 

Because of time dilation, a rocket ship could not accelerate to 
the speed of light relative to the flow.  As the ship approaches c, 
time dilation begins to degrade the effectiveness of its engines.  
The faster it goes, the more they're degraded.  It's like placing a 
penny on a floor, and then moving it halfway toward a wall, and 
then moving it halfway again, and so on.  In doing so, the penny 
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will forever be approaching the wall, but it won't ever actually 
reach it. 

Additionally, no rocket ship would be able to hold a position 
just outside the event horizon of (or anywhere relatively near) a 
black hole.  Due to time dilation, the effectiveness of its engines 
would be so degraded that it would plummet in. 

Motion 

All motion (not just uniform motion) is absolute, because it's 
measured against the flow.  In deep space, far from any gravita-
tional masses, the rate of the flow is very near zero.  As a gravita-
tional mass is approached, the velocity of the flow increases – the 
larger the mass, the larger the increase. 

If a space ship is traveling at some fixed velocity relative to 
the flow – say 5,000 meters per second, it will continue at that 
velocity – relative to the flow – unless acted upon by some force, 
as in the case of firing its engines.  Even if the flow accelerates – 
as when nearing a gravitating mass, the space ship will constant-
ly maintain its 5,000 m/s differential relative to the flow – with-
out “feeling'” any sense of the flow's acceleration. 

Consider two space ships (A and B) separated by some dis-
tance, both traveling at 5,000 m/s relative to the flow, and both 
on a line with, and heading toward a gravitating mass with ship 
A nearer the mass.  As the ships approach the mass, the flow 
accelerates toward it.  Therefore, the ships also accelerate relative 
to the mass.  However, even though their velocity relative to the 
flow remains constant (at 5,000 m/s), the distance between the 
ships increases.  This is simply a result of the flow local to ship A 
accelerating faster than the flow local to ship B.  And the reason 
it occurs is because the flow velocity at any given distance from a 
gravitating mass is simply the corresponding escape velocity. 

Rest and Accelerating States 

Any object that is not in a state of acceleration relative to the 
local flow is defined as being in a state of rest relative to the flow.  
Being at rest relative to the flow does not necessarily mean being 
motionless relative to the flow.  In fact, the motionless rest state 
is a special case.  It is the only state - rest or accelerating -where 
time dilation does not occur.  This is true, even for an object fall-
ing into a black hole.  Time dilation is measured solely relative to 
the local flow.  This holds regardless of the flow's local motion 
(or lack thereof) relative to the cosmos. 

An object at rest on the surface of Earth is not at rest relative 
to the flow.  Even though its velocity relative to the flow is con-
stant, the flow is, in actuality, accelerating through it.  This is 
what causes the ‘feeling’ of gravity.  It doesn't matter whether an 
object is accelerating relative to the flow, or the flow is accelerat-
ing relative to an object, the result is a ‘feeling’ of gravity. 

Red-shift 

The red-shift of light, whether from a massive star, or a star 
that is rapidly moving (away from Earth) is accounted for by the 
flow.  While the reasons for the red-shift in each case differ, the 
result is the same.  In the case of a rapidly moving star, the light 
waves emitted become elongated due to the Doppler effect.  The 
situation is synonymous with a race car speeding along at a con-
stant velocity.  Figure 19 represents a race car moving at half the 

speed of sound.  The cadence of the detonations in the piston 
chambers is constant, and is indicated by the dots.  The sound of 
each detonation is propagated both forward and backward at the 
maximum velocity supported by the medium - the atmosphere in 
this case, and is indicated by the parens.  The time coordinate is 
vertical, and flows from top to bottom.  Movement of the race car 
is horizontal - from left to right. 

 
Figure 19.  Frequency Shifted Wave Propagation. 

The arrangement of Fig. 19 is also applicable to a star moving 
at half the speed of light.  The successive wave fronts bunch up 
(compress) in front of the star, in the direction of its motion – 
causing the light to shift toward the blue end of the spectrum, 
while they spread out (elongate) behind it, causing the light to 
shift toward the red end of the spectrum. 

For a massive star, the red-shift is due to the waves of the 
emitted light expanding (lengthening out) as they move away 
from the star.  This happens because the rate of the flow is very 
rapid at the surface of the star, and gradually decreases with 
distance.  The effect is actually very similar to the Doppler effect 
described above in relation to Fig. 19.  The only difference is that 
the rate of rapidity isn't uniform.  Rather, it's accelerated.  Or, 
more accurately, it's accelerating.  Specifically, as the flow ap-
proaches the star, its velocity increases.  The closer it gets, the 
more its velocity increases, as it's velocity at any given point (alti-
tude) is simply the corresponding escape velocity. 

Figure 20 shows a light ray as it moves away from a massive 
star.  The hash marks along the path of the ray represent equal 
time segments.  In other words, the length of time it takes for the 
light ray to travel between any two hash marks is the same.  As 
such (i.e., because of the way the waves gradually elongate), it 
might possibly best be referred to as a gradient Doppler effect. 

 

 
Figure 20: Gradient Frequency Shifted Wave Propagation 

 

Additional Tests 

While it is true that no experiment can be performed to dis-
tinguish between gravitational acceleration and non-
gravitational acceleration using inertial materials, such is not the 
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case with light.  Light is rather unique in that it is massless and, 
therefore, has no inertia.  This is why it instantly changes speed 
as it passes from one substance to another.  This is also why it 
always travels at the highest supported speed of any given sub-
stance. 

Gravitational vs. Non-gravitational Acceleration 

Gravitational acceleration is a state of acceleration where a 
change in velocity (for an object) does not occur.  This is the case 
for objects sitting on the surface of Earth.  Although they are con-
stantly in a state of acceleration, they are not accelerating.  Their 
velocities are constant, because their velocities (relative to the 
flow) are simply their escape velocities.  All other acceleration, 
regardless of whether it occurs in a gravitational field, involves 
constantly changing velocity.  All motion is measured relative to 
the local flow, and all motion relative to the local flow results in 
time dilation, and any movement of the flow relative to the cos-
mos is irrelevant with respect to time dilation. 

Although the 1g of acceleration experienced by an object at 
rest on the surface of Earth, and the acceleration experienced by 
the same object in a space ship accelerating at 1g in deep space 
are the same, the two can be distinguished via interferometers.  
For an interferometer at rest on Earth’s surface, the flow though 
occurs at a constant rate.  Therefore, it would show a fixed inter-
ference/fringe pattern.  However, since the velocity of an accel-
erating space ship is constantly changing relative to the flow, the 
interferometer would show a constantly changing interfer-
ence/fringe pattern. 

When Michelson and Morley set out to perform their most 
famous experiment, they designed it based on scientifically 
sound principles.  Their aim was to detect the “aether wind.”[16]  

At the time, the aether was thought to be both ubiquitous and 
static.[16]  As such, Earth would move through it on its orbital 
path around the Sun. 

Thinking the aether was static, they decided to orient their in-
terferometer horizontally on a stone slab floated in mercury so it 
could be rotated smoothly.[17]  Combining this flexibility with 
the rotation of Earth about its axis would allow their device to 
“look” in all directions over the period of a day.  Michelson and 
Morley were on the right track, but their experimentation (and 
that of subsequent researchers) suffered from one fatal flaw. 

The flaw laid in the fact that the flow is perpendicular to 
Earth's surface.  Operating under the incorrect premise that the 
aether was static, they never pointed their interferometer up-
ward.  So no matter how they turned their device, or how much 
Earth rotated, their device was always oriented 90 degrees out of 
phase.  Thus, they unwittingly guaranteed themselves the null 
result. 

If the orientation of the interferometer were changed from the 
horizontal plane to a vertical one, then as the device is rotated 
from pointing in the horizontal direction to the vertical direction, 
the interference pattern (or the fringes thereof) will change. 

Appendix C lists an example set of calculations for the Mi-
chelson-Morley experiment, and specifies the comparative sensi-
tivity required to perform a synonymous experiment regarding 
gravitational flow. 

Measuring Flow Affected Light Speed via GPS 

A relatively simple test of the effect of the flow on light 
should be feasible by having the GPS satellites and ground sta-
tions send simultaneous signals to each other.  Since the clocks of 
the satellites and ground stations are synchronized,[6] simultane-
ity of these events shouldn't be an issue. 

At a pre-determined time, when a satellite passes directly 
over a ground station, have both the satellite and the ground 
station send signals to each other, and have them record the re-
spective times when the signals arrive.  Due to the effects of the 
flow on the travel time of the signals, it will be determined that 
the signal which traveled down exceeded the speed of light, ar-
riving 1.65 microseconds ( 61.65 10  seconds) sooner, because 
the flow boosted its speed.  Conversely, it will also be deter-
mined that the signal that traveled up did so at less than the 
speed of light, arriving 1.65 microseconds ( 61.65 10  seconds) 
later, because the flow retarded its speed. 

Again, like with the Shapiro delay, a computer simulation 
was used to calculate these differences.  The methodology ap-
plied was similar with respect to the headwinds/tailwinds, but 
differed in that this simulation didn't involve or require the 
computation of any crosswinds, as the respective signals travel 
along a perfectly vertical path. 

For applications like two way range finding involving the 
relatively weak gravity field of Earth, the differences in travel 
time between the two directions almost completely cancel each 
other out (and researchers would be none the wiser).  For exam-
ple, the net difference between the two trips for this GPS test is 
only 85 picoseconds ( 118.5 10  seconds). 

Revisiting Gravity Probe A 

In 1976, a relativity experiment known as Gravity Probe A 
was conducted.[18]  Its purpose was to test the time dilation of an 
object in the weaker gravitational field above Earth.  The probe 
was carried by rocket to an altitude of 10,000 km, where it pro-
ceeded to fall back to Earth.  In agreement with relativity predic-
tions, the test showed that the probe experienced less time dila-
tion than Earth-bound objects, and provided useful data for the 
GPS satellites that began to be constructed and launched into 
orbit shortly thereafter. 

Even at the probe’s apogee of 10,000 km, the rate of the flow 
is roughly 7,000 m/s, as given by Eq. (1) with a  10,000.  Even 
though this is significantly less than the flow at Earth’s surface 
[See Eq. (5)], resulting in ‘less’ time dilation, a more dramatic 
result would be zero time dilation. 

As the only condition where time dilation does not occur for 
an object is when it is motionless relative to the flow, another 
experiment similar to Gravity Probe A should be performed.  
The principle difference being that, instead of just letting the 
probe free fall from its apogee, accelerate it straight downward 
until its velocity (relative to Earth) matches the velocity of the 
flow (also relative to the Earth).  Once the velocities are identical, 
disengage the thrusters and let the probe free fall from that point 
on.  Since the probe will then be motionless relative to the flow 
(i.e., in the motionless rest state), it will experience no time dila-
tion. 
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For optimal effect and accuracy, the rocket's ascent trajectory 
will need to be configured such that the probe's descent trajecto-
ry will be along a sidereal line.  The best (and possibly easiest) 
sidereal line would be in the direction of Earth's orbital path, 
which means the test would need to be carried out at dawn. 

The time dilation factor for the probe will be zero (0), which 
is equivalent to the proper time of deep space.  The time dilation 
factor for clocks on Earth's surface is 6.967 × 1010 , as is given in 
Eq. (8) of the GPS satellite time dilation calculation at the outset 
of this paper. 

Flow-Affected Light Path 

An experiment to test the flow-affected path, which the signal 
is described as following in the Shapiro delay section, could be 
conducted by sending a space probe into high orbit around Mer-
cury.  The setup would be largely synonymous with that of 
Shapiro’s experiment, in that the Earth, the Sun and the third 
body (Mercury in this case) would be in near superior conjunc-
tion. 

The aim of this test would be to show the path taken by a 
signal sent from the probe.  As such, have the probe start send-
ing a countdown signal just as it is about to go behind the planet, 
with the countdown timed so that it reaches zero right when the 
planet would block/obscure any signal following the relativity 
predicted path.  Nevertheless, have the probe continue sending 
the signal with the countdown going into negative numbers.  It 
will turn out that the extended portion of the signal carrying the 
negative countdown numbers will be received for a short period 
of time because the flow affected path is arched (elongated) 
compared to the relativity predicted path. (See Fig. 14) 

Remarks 

In the second century, Ptolemy (Claudius Ptolemaeus) con-
structed a surprisingly accurate model of the solar system,[19] 

which was useful for predicting both the motions and future 
positions of the planets, even though he based it on a false prem-
ise.  The scholars of his day thought that the solar system (and 
the universe for that matter) was geocentric.[20] 

Laboring from this perspective, he had to compensate for 
what he didn’t know – that the solar system is heliocentric.  To 
make it work, he conceived that the planets were actually on the 
rims of epicycles, and added an offset equant.[19]  Thus, the 
model was able to account for the retrograde motions of the 
planets.  It was very accurate, causing it to be widely adopted 
and utilized for more than 1,300 years.[21]  Today, Ptolemy's 
model stands as a classic example of the fact that just because 
something works, doesn't mean that it isn't based on a false 
premise. 

When Einstein was formulating general relativity, he envi-
sioned a curved space-time as a way of accounting for what were 
otherwise inexplicable observed behaviors.  Like Ptolemy’s mod-
el, relativity has certainly been shown to be accurate.  But in en-
visioning a curved space-time, was Einstein simply compensat-
ing for what he didn’t know - that space-time flows? 

Gravitational flow is a single model covering the domains of 
both general and special relativity, and it does so without suffer-
ing from time dilation paradoxes or requiring tortured explana-
tions of incongruous reference frames. 

For perspective, Appendix D lists a summary of differences 
between relativity and gravitational flow. 

Appendix A.  Orbital Precession Look-up Data 
Table 1: Time Dilation and Perihelion Precession Values 

body eccentricity period dilation in dilation out total arc sec / Earth century
Mercury 0.20563 87.9691 0.163401 0.127326 0.80816 43.22
Venus 0.00675 224.701 0.199513 0.197902 0.80294 8.63
Earth 0.01671 365.256 0.235982 0.231295 0.95839 3.84
Mars 0.09331 689.971 0.304568 0.272227 1.33208 1.35
Icarus 0.82684 408.76 0.378768 0.106370 7.06686 9.38
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Table 2.  Minimalist Method Angles and Factors 
eccentricity angle factor body

0.0 13.6996308594 0.0000000000
0.006755508 13.6996070052 0.0054485343 Venus

0.01 13.6995782849 0.0080653596
0.01671123 13.6994835363 0.0134784207 Earth

0.02 13.6994197079 0.0161311438
0.03 13.6991551993 0.0241977775
0.04 13.6987844380 0.0322656862
0.05 13.6983143844 0.0403309490
0.06 13.6977222246 0.0484070366
0.07 13.6970294783 0.0564813359
0.08 13.6962278876 0.0645586263
0.09 13.6953164699 0.0726393420

0.093315036 13.6949899067 0.0753189627 Mars

   

eccentricity angle factor body
0.10 13.6942941041 0.0807239200
0.11 13.6931913361 0.0888128003
0.12 13.6919193361 0.0969064267
0.13 13.6905479738 0.1050052467
0.14 13.6890677357 0.1131097123
0.15 13.6874762575 0.1212188280
0.16 13.6857490249 0.1293374117
0.17 13.6839063411 0.1374615746
0.18 13.6819383485 0.1455932422
0.19 13.6798425084 0.1537328942
0.20 13.6776160972 0.1664724963

0.205630208 13.6763040459 0.1664724963 Mercury
0.21 13.6752561989 0.1700381062

 

eccentricity angle factor body
0.22 13.6727596968 0.1782046625
0.23 13.6701232652 0.1863811973
0.24 13.6673433593 0.1945682301
0.25 13.6644237560 0.2027654303
0.26 13.6613377904 0.2109759181
0.27 13.6581038478 0.2191976636
0.28 13.6547098468 0.2274320890
0.30 13.6474221353 0.2439412909
0.31 13.6435179054 0.2522172562
0.32 13.6394325440 0.2605082810
0.33 13.6351599596 0.2688149969
0.34 13.6306936922 0.2771380519
0.35 13.6260344633 0.2854775144

   

eccentricity angle factor body
0.36 13.6211522874 0.2938358606
0.37 13.6160621731 0.3022120022
0.38 13.6107483667 0.3106072614
0.39 13.6052021842 0.3190223849
0.40 13.5994144044 0.3274581431
0.41 13.5933752316 0.3359153315
0.42 13.5870742545 0.3443947718
0.43 13.5805004019 0.3528973141
0.44 13.5736418939 0.3614238385
0.45 13.5664937542 0.3699748132
0.46 13.6776160972 0.1664724963
0.47 13.5512288497 0.3871565972
0.48 13.5430977647 0.3957885222

 

eccentricity angle factor body
0.49 13.5346104305 0.4044493533
0.50 13.5257494899 0.4131401971
0.51 13.5164963704 0.4218622077
0.52 13.5068311790 0.4306165897
0.53 13.4967325852 0.4394046021
0.54 13.4861776909 0.4482275625
0.55 13.4751494132 0.4570865117
0.56 13.4635986840 0.4659839161
0.57 13.4515195458 0.4749202782
0.58 13.4388736716 0.4838975371
0.59 13.4256277744 0.4929173779
0.60 13.4117458223 0.5019815779
0.61 13.3971887469 0.5110920147

   

eccentricity angle factor body
0.62 13.3819141124 0.5202506752
0.63 13.3658757403 0.5294596652
0.64 13.3490232799 0.5387212202
0.65 13.3313017179 0.5480377182
0.66 13.3126508140 0.5574116933
0.67 13.2930044500 0.5668458510
0.68 13.2722898771 0.5763430868
0.69 13.2504268405 0.5859065055
0.70 13.2273265563 0.5955394446
0.71 13.2028905126 0.6052455005
0.72 13.1770090543 0.6150285594
0.73 13.1495597066 0.6248928318
0.74 13.1204051763 0.6348428936
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eccentricity angle factor body
0.75 13.0893909519 0.6448837343
0.76 13.0563424096 0.6550208124
0.77 13.0210612890 0.6652601231
0.78 12.9833213782 0.6756082767
0.79 12.9428631790 0.6860725941
0.80 12.8993872558 0.6966612225
0.81 12.8525458600 0.7073832757
0.82 12.8019322634 0.7182490081

0.826837896 12.7649088200 0.7257675642 Icarus
0.83 12.7470670227 0.7292700309
0.84 12.6873800425 0.7404595848
0.85 12.6221868139 0.7518328891
0.86 12.5506564187 0.7634075927

   

eccentricity angle factor body
0.87 12.4717676185 0.7752043714
0.88 12.3842473388 0.7872477270
0.89 12.2864823492 0.7995670876
0.90 12.1763888435 0.8121983546
0.91 12.0512134450 0.8251861476
0.92 11.9072172947 0.8385871774
0.93 11.7391501333 0.8524755348
0.94 11.5393211638 0.8669514407
0.95 11.2958281461 0.8821567390
0.96 10.9888240416 0.8983049268
0.97 10.5814437137 0.9157472565
0.98 9.9923516633 0.9351495008
0.99 8.9713025424 0.9581650753             

 

 
Appendix B.  Boundary-Value Calculations 

The rigorous nature of scientific calculations requires that 
any result, intermediate or final, adhere to conventions regard-
ing significant figures.  The GPS satellite solution given near the 
outset of this paper does just that.  However, there are situations 
where critical differences between very large numbers are so tiny 
that imposition of significant figures causes those critical differ-
ences to be lost.  For example, compare the result in Eq. 17 with 
that in Eq. 19.  In such cases, the calculations can instead be per-
formed using boundary values. 

Calculations using boundary values involves utilizing the 
highest and lowest values for each input value. For example, if a 
measurement value is given as 3.5, it means that the actual value 
is closer to 3.5 than 3.6 (on the high side), and closer to 3.5 than 
3.4 (on the low side). As such, the upper boundary (limit) is 3.55, 
because the actual value cannot be higher. Similarly, the lower 
boundary is 3.45, because the actual value cannot be lower. 

The process of determining the upper and lower boundaries 
is likewise carried out for all input values. For example, given 
input values of 3.5, 14.870 and 7.508E+6, the boundary values are 
3.55 and 3.45, 14.8705 and 14.8695, and 7.5085E+6 and 7.5075E+6 
respectively. 

Since there are two boundary values for each of the three in-
put values, the calculations need to be run 32  times: once for each 
unique combination of boundary values, as depicted in the fol-
lowing Matrix: 

Boundary Values Matrix: 
Boundary 1 Boundary 2 Boundary 3

High 3.55 14.8705 7.5085E 6
Low 3.45 14.8695 7.5075E 6




 

Values Used in Eight Executions: 
Execution 1 2 3 4 5 6 7 8
Boundary 1 H L H H H L L L
Boundary 2 H H L H L H L L
Boundary 3 H H H L L L H L

 

Once all combinations of the boundary values have been run 
through the calculations, the highest and lowest resulting an-

swers are selected.  The actual answer is guaranteed to be within 
the range of these two answers.  Comparing the two answers, all 
leading digits that match (these are the significant figures) are 
retained, and all the other/trailing digits are discarded. 

Performing the calculations in this manner allows as many 
trailing zeroes to be tacked on to the boundary values as needed 
– without compromising the validity of the calculations whatso-
ever. As an exercise, the GPS calculations were recalculated us-
ing boundary values, and the final result matched that of the 
traditional significant figures method. 

The intermediate values shown in the minimalist method so-
lution are simply midpoint values (at each step) between the 
highest and lowest boundary values executions. 

Appendix C.  Example Calculations for MMX 
Consider the 1887 Michelson-Morley Experiment, MMX.[22]  

Given Earth’s orbital velocity of 30 km/s and using white light 
with the 11.0 meter arm length interferometer Michelson and 
Morley constructed, they expected a 0.4 fringe pattern shift. 

Note that ‘white’ light is not one of the colors of the visible 
spectrum (from 400 to 700 nanometers), but rather light com-
posed of all the visible wavelengths simply appears as white. As 
such, the average visible wavelength of 550 nanometers is used 
in the following example solution. 

As with the minimalist perihelion precession calculations, 
boundary calculations were used in this solution. Also note that 
the calculations presented are not meant to be a replica of how 
Michelson and Morley actually determined the expected fringe 
shift. 

Set-up Data 

Arm length arml  11.0 m [10] 
Orbital velocity of Earth Earth 30 km/secv   [11] 

Wavelength of ‘white’ light    75.50 10 m 
Light speed c  299,792,458 m/s [4] 

Solution 

Calculate the standard leg time ( legt ). This is the time (in se-

conds) it would take the light beam to travel the distance of the 
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11.0 meter leg when it is perpendicular to the direction of Earth's 
orbital path: 
 8

leg arm / 3.669205 10 sect l c     (47) 

Calculate the headwind leg time ( hwt ).  This is the time (in se-
conds) it would take the light beam to travel the distance of the 
11.0 meter leg when it is in line with Earth's orbital path, and is 
headed in the same direction: 

 8
hw arm Earth/ ( ) 3.669572 10 sect l c v      (48) 

Calculate the tailwind leg time ( twt ).  This is the time (in se-
conds) it would take the light beam to travel the distance of the 
11.0 meter leg when it's in line with Earth's orbital path, but is 
headed in the opposite direction: 

 8
tw arm Earth/ ( ) 3.668838 10 sect l c v      (49) 

Calculate the total standard time ( tott ), for both the outbound 
and inbound legs: 

 8
tot leg2 7.338410094 10 sect t     (50) 

Calculate the total ‘wind’ time ( windt ), for both the outbound 
(into the aether wind) and inbound (away from the aether wind) 
legs: 

 8
wind hw tw 7.338410167 10 sect t t      (51) 

Calculate the net difference between the ‘wind’ time and stand-
ard time ( dift ): 

 16
dif wind tot 7.348574227 10 sect t t      (52) 

Calculate the number of standard wavelengths per second ( stdw ) 

 14
std / 5.450772 10 /sw c      (53) 

Calculate the number of standard wavelengths for the arm 
length (λstd): 
 7

std tot std 4.0 10t w      (54) 

Calculate the number of ‘wind’ affected wavelengths for the arm 
length (λwind): 
 7

wind wind std 4.0000000400554 10t s      (55) 

Calculate the total number of fringe band shifts possible: 

 wind std 0.4 fringe shifts    (56) 

The escape velocity at Earth's surface is only 11,191 m/s (Eq. 7), 
so an interferometer designed to detect the flow in the vertical 
plane would need to be very sensitive. For example, if a 532 na-
nometer laser were used, the device would need to have an effec-
tive arm length of 76.5 meters to produce an equivalent 0.4 fringe 
shift. 

Appendix D.  Summary of Differences to Relativity 
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