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Abstract

Investigate and define non-reversible arithmetic in ∗G and the real numbers. That
approximation of an argument of magnitude, is arithmetic. For non-reversible multi-
plication we define a logarithmic magnitude relation ��. Apply the much-greater-than
relation � in the evaluation of limits. Consider L’Hopital’s rule with infinitesimals and
infinities, and in a comparison f (z) g form.

1 Introduction

Two parallel lines may meet at infinity, or they may always be apart. Infinity is non-unique.
We believe different number systems can co-exist by the non-unique nature of infinity.

We focus on the infinite case where the largest magnitude dominates, a+ b = a where b 6= 0.

For example, arbitrarily truncating a Taylor series. f(x+h)|h=0 = f(x)+hf ′(x)+ h2

2
f (2)(x)+

. . . |h=0 = f(x) + hf ′(x)|h=0.

That an infinite sum of the discarded lower order terms have no effect on the outcome is
explained by sum convergence theory. However, if such a sum was for example bounded
above by an infinitesimal, then the realization of the sum (a transfer) to real numbers would
discard the infinitesimal terms, Φ 7→ 0.

DU BOIS-REYMOND in his journal articles on the infinitary calculus is not
much interested in a theory of sets as such, or even explicitly in sets on lines. He
is interested in the nature of a linear continuum, but chiefly because he wants
to consider a more general ”continuum” of functions. He especially concerns
himself with limit processes as they occur in a linear continuum, since he wants
to consider limit processes among functions. [4, p.110]

In our previous papers we have identified the investigation of functions as working in a
higher dimensional number system than R, and fitted ∗G to du Bois-Reymond’s work, as a
representation of the continuum that he was investigating.

Since we believe ∗G is a field, multiplication and addition by non-zero elements are reversible
prior to realization. For example truncation ∗G 7→ ∗G. After this process, information is
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lost and in general you cannot go back.

What we demonstrate is that arithmetic ‘is’ non-reversible; and that this is a major aspect
of analysis. Ultimately we see this as a way for working with transference, with reasoning
by magnitude.

For example, we prove L’Hopital’s rule Proposition 4.2 not with an equality but with an
argument of magnitude. This, after reading the original translation of the rule is closer to
the discovery than the formation with the mean value theorem. And this is a problem, that
mathematics is being used not in an intuitive way, but as a means of proof. Newton did not
publish the Principia with his calculus, but the traditional geometric arguments which are
“extremely” difficult to use. Analysis is not complete without a more detailed investigation
into arguments of magnitude.

2 Non-reversible arithmetic

The following is a complicated argument that associates finite mathematics with reversible
processes, and infinitary calculus with non-reversible processes. This results in non-uniqueness
in the additive operator, the consequences of which are profound.

To start, consider addition and multiplication. Given x + 2, then (x + 2) − 2 gives back x,
the −2 undoing the +2 operation. Similarly for multiplication, if we start at 5, 5× 2 = 10.
Reversing, 10/2 = 5. Similarly with powers, where logarithms and powers are each others
inverse.

However, if the operator is not reversible you cannot undo the operator previously applied; it
is as if the operation has disappeared. n2+lnn = n2|n=∞ leaves no evidence of adding lnn, an
infinity. We need a number system with infinities for this to occur. The much-greater-than
relation with realization explains this.

Theorem 2.1. a, b ∈ ∗G; (a, b 6= 0) Assume transfer between Φ and 0.

If a+ b = a⇔ a � b.

Proof. δ ∈ Φ;

If a+ b = a, a
a

+ b
a

= a
a
, b
a

= 0, 0 7→ Φ, b
a

= δ, a � b.

If a � b, b
a

= δ. Consider a+ b = y, a
a

+ b
a

= y
a
, 1 + δ = y

a
, δ 7→ 0, 1 = y

a
, a = y, a+ b = a

Corollary 2.1. a, b ∈ ∗G; b 6= 0

If a+b = a then after the addition and realization in general, it is impossible to determine b.
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Proof. By Definition 2.2.

This is a fundamental statement about our numbers. We use Theorem 2.1 whenever we
approximate. We approximate whenever we use infinitesimal or infinite numbers. By con-
sidering an alternative definition to the much-greater-than relation as an infinitesimal ratio
(a � b then b

a
∈ Φ) is explained.

If a � b is alternatively defined[2, p.19]: if a − b = ∞ then a � b. We cannot apply
the transfer Φ → 0 then a + b = a is not true in general. Consider a = ex+1, b = −ex,
ex+1− ex = (e− 1)ex|x=∞ =∞ but ex+1 6= (e− 1)ex|x=∞. This lacks the ‘a+ b = a’ property
given in Theorem 2.1. Since this paper is concerned about non-reversibility we do not want
to lose this property.

Proposition 2.1. If an ∼ bn|n=∞ then there exists cn: an + cn = bn|n=∞ where cn ≺ an.

Proof. an + cn z bn, an z bn as an + cn = an, z = ∼

Definition 2.1. An Archimedean number system has no infinitesimals or infinities. A non-
Archimedean number system is not an Archimedean number system.

That is, a non-Archimedean number system has non-reversible arithmetic, see Definition 2.2.
A consequence of the existence of ratios being an infinitesimal or an infinity.

A consequence of the Archimedean property are unique inverses, both additive and multi-
plicative, which allow unique solutions to equations involving addition and multiplication.

With the infinireals, as long as we do not approximate via the “realization” operation,
and assuming non-zero numbers, we have unique inverses when adding and subtracting and
unique inverses when multiplying or dividing.

However the non-Archimedean property is necessary for Theorem 2.1. We need an infinity
of possibilities with addition before we can say an operation is non-reversible. However
Archimedean systems can have non-reversible arithmetic.

Theorem 2.2. Multiplication by 0 in R number systems is non-reversible.

Proof. Let x ∈ R. Consider the equation x×0 = 0. If you then ask what was the value of x,
there is an infinity of solutions in R. By Definition 2.2 the multiplication is non-reversible.

The number zero collapses other numbers through multiplication. What was the original
number being collapsed? For this reason 0 is considered separately from other numbers. By
defining 00 = 0 we can extend the number system further, see Example 2.5.
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The reals, with which we are so familiar, form an Archimedean number system which excludes
infinity.

This exclusion of infinity in many respects is illusionary, as an arbitrary large number acts
as an infinity. This is exploited in proofs by retaining the property of being a finite number.
For the statement “∀n > n0 the following is true ...” implicitly defines infinity.

Excluding that infinity implicitly exists even when ignored, the Archimedean property es-
sentially means that there are no infinitesimals or infinities as elements.

There is fascination that both the finite perspective and infinite perspective can co-exist.
Both can describe, even when they are contradictory viewpoints, that is, they are completely
different views of the same event. 1. a+ b for finite numbers excluding zero always changes
the sum. 2. a+ b = a

If we add a cent to a million dollars we have a million dollars plus a cent. Alternatively, if
we treat a million dollars as the infinity, then adding a cent does ‘nothing’ to the sum, and
the sum remains unchanged, as its magnitude is not changed. Hence, the accountant and
the businessman may have different views on the same transaction.

Looking at infinitary calculus with infinity as a point, consider lnn + n2 = n2|n=∞. The
term lnn|n=∞ = ∞ is infinite, but acts like a zero when added to a much larger infinity, a
consequence of lnn ≺ n2|n=∞. Replacing lnn with n gives a similar result where n|n=∞ acts
as a zero element, when n+ n2 = n2|n=∞. The additive identity is not unique. It should be
apparent that there is an infinity of additive elements.

The same can also be true with regard to multiplication, where a multiplicative identity is
not unique. That is, 1 is not the only element which, when multiplied, does not change the
number.

Example 2.1. The following demonstrates non-unique multiplicative identities. Let f =
∞, g = ∞, h = ∞. Consider f · g z h, ln(f · g) (ln z) lnh, ln f + ln g (ln z) lnh.
Let ln f � ln g, then ln f + ln g = ln f and ln f (ln z) lnh. When reversing the process is
possible, f z h and g is a multiplicative identity.

Definition 2.2. We say that an arithmetic is non-reversible if there is an infinite number
of additive identities or there is an infinite number of multiplicative identities.

Let g(n) be one of the infinitely many additive identities. Let h(n) be one of the infinitely
many multiplicative identities.

If one of the following is true, then we say that the arithmetic is non-reversible arithmetic.

f(n) + g(n) = f(n) or f(n)h(n) = f(n)

Consider when lower order terms realized?
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Theorem 2.1 proves non-reversible addition. From this, Theorem 3.1 proves non-reversible
multiplication. These operations, particularly addition have wide applicability. However, we
stress that this is only one possibility at infinity when via algebra and a transfer, Φ 7→ 0.
That at infinity we can have non-uniqueness is further exploration of what constitutes the
continuum.

While Theorem 2.2 multiplication by 0 in R is non-reversible, it is isolated. By excluding
the element 0 in R, multiplication and division are reversible. ∞× c = ∞ when c 6= 0 has
a similar property, but in R, ∞ is excluded. 0 ×∞ is better considered in ∗G before the
infinitesimals or infinities are realized. The order in which numbers are realized matters.

Generally addition is easier for reasoning with non-reversible arithmetic than multiplication;
probably a consequence of multiplication being defined as repeated addition, a more complex
operation. Hence, for example, when applicable,

∏n
k=1 ak = e

∑n
k=1 ln ak transforms a product

to a power with a sum for reasoning.

Calculus has been extended in many ways to use infinity in calculations and theory because
infinity is so useful. Calculus often states the numbers in R but then reasons in ∗G. Limits
are a typical example. We generally agree with this as the utility of calculation is paramount.

However, just as we discuss the atom in teaching physics, because it describes fundamental
properties, a teaching of the infinitesimal is warranted. Not the exclusion of its existence,
which is fair to say is the current practice.

Infinitary calculus facilitates arguments with magnitude, and has the potential to reduce
the use of inequalities in analysis, beyond what Non-Standard-Analysis or present analysis
does. This could make problem-solving more accessible by reducing the technical difficulties
associated with the use of inequalities.

For example, one may experience the problem of not knowing or not using the right inequality,
and become stuck; without specific knowledge, no progress is likely to be made. This applies
to specialized domains where networking may be required. If, however, the problem could
be done without “networking”, time would be saved.

As well as providing alternative arguments to problems, infinitary calculus can be combined
with standard mathematical arguments and inequalities, leading to them being used in new
ways.

Well how can this be achieved?

Simply put, by employing non-reversible arithmetic; that is, in number systems with non-
Archimedean properties, non-reversible arguments can be made. This is indeed possible with
the much-less-than (≺) and much-greater-than (�) relations defined by du Bois-Reymond.

We have an equation that we would like to solve hence the need for a new number system.
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Considering the scales of infinity, there does not exist c ∈ R with such a property to move
between the infinities because c is finite.

Example 2.2. Let c ∈ R then c ≺ ∞, 6 ∃c : cn2 = n3|n=∞. Solving in ∗G, cn2 = n3|n=∞,
c = n|n=∞, c ∈ Φ−1. This implies c 6∈ R. If we restricted c to R then the equation would not
have been solved, as c was infinite.

An Archimedean number system cannot solve this. Just as we needed i to solve x2 = −1,
we need a non-Archimedean number system to solve the equation with infinities.

The definition of ≺ and little-o distinguish between infinities. a ≺ b if a
b
∈ Φ. If two functions

differ infinitely through division, then they must also differ infinitely through addition to a
greater degree (See Theorem 2.1).

Depending on the context, lower-order-magnitude terms may be disregarded. f(x) + g(x) =
g(x)|x=∞. f(x) =∞, g(x) =∞. Here f(x)|x=∞ acts as a zero identity element, even though
f(x) is not zero. However f(x) has its magnitude dwarfed by the much larger g(x), so f(x)
is negligible.

To avoid summing infinite collections of terms, the general restriction when applying the
simplification an + bn = an|n=∞ for infinitary or infinitesimal an and bn is that the rule is
only good for a finite sum of infinitesimals or infinities.

A sum of infinities or infinitesimals to infinity, can itself step up in orders. In other words,
generally apply the simplification to a finite number of times. If you were to sum infinities
or infinitesimals to infinity, you would need to integrate instead. Or apply truncation when
sum convergence is known.

This is discussed in detail [9]. The assumption of independence of sums may by invalid at
infinity [11]. Briefly, how we view finite mathematics may be completely different to how we
view mathematics “at infinity” because it is a much larger space.

The advantages of such simplification can allow classes of functions to be reduced.

Example 2.3. { 1
x2+π

, 1
x2−3x

, . . .}|x=∞ simplify to considering 1
x2
|x=∞.

Applications include taking the limit which applies in summing infinitesimals to zero, hence
truncating a series. The arguments can apply to diverging sums as well.

Use of extended calculus in ∗G as a heuristic, for developing algorithms.

6



Example 2.4. Developing an algorithm for approximating
√

2. x, xn, δn ∈ ∗G; δ ∈ Φ.

(x+ δ)2 = 2

x2 + 2xδ + δ2 = 2|δ=0

x2 + 2xδ = 2|δ=0 (2xδ � δ2|δ=0)

x2
n + 2xnδn = 2|δ=0 (Developing an iterative scheme.)

δn =
1

xn
− xn

2
(Solving for δn)

xn+1 = xn + δn (Progressive sequence of xn)

If δn → 0 then at infinity δn becomes an infinitesimal(see [10, Example 2.12], that is
δn|n=∞ ∈ Φ, then (x+ δ)2 ' 2 is solved, and xn+1 ' xn + δn has xn converging. Starting the
approximation with x0 = 1.5, x5 is correct to 47 places (for a numerical calculation with Max-
ima see [7]), where the algorithm was transferred from ∗G to R. (∗G, δn, xn) 7→ (R, δn, xn),
an infinitesimal was promoted to a real number.

Turning towards the number system, what is common is the operation of numbers at zero
or infinity. That is where the numbers display non-Archimedean properties.

In fact, all function evaluation is at zero or infinity. Simply shift the origin. Zero and infinity
form a number system, R∞. The cardinality of R∞ is infinitely larger than the cardinality of
R. Then the gossamer number system ∗G is much larger than the real number system(the
reals which are embedded within it).

In this paper, addition simplification is applied to solving relations by converting a series of
relations to a sum, where lower order terms are discarded and the relations solved.

Definition 2.3. Using the Iverson bracket notation (see [12, p.24])

[f z g] =

{
1 when the relation f z g is true,
0 when then relation f z g is false.

In a more radical approach to demonstrate addition as a basis for building relations, we can
define 00 = 0 as another extension to the real number system, which then allows the building
of the comparison greater than function (see Example 2.5).

Canceling the 0’s is not allowed, as by definition this is now a non-reversible process, as we
view either multiplication by 0 or multiplication by 0

0
as collapsing the number to 0. We

also get to test if a number is zero or not.

Example 2.5. Non reversible mathematics to build the relations. See Definition 2.3

[x > 0] =
x+ |x|

2x
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When x = 0, 0+|0|
2×0

= 0
0

= 0. When x > 0, x+|x|
2x

= 2x
2x

= 1. When x < 0, x+|x|
2x

= 0
2x

= 0.

[x 6= 0] = x0

When x = 0, 00 = 0. When x 6= 0, x0 = 1.

3 Logarithmic change

We introduce a relation, for better explaining magnitudes, and their comparison. While
f � g describes an infinity in the ratio of f and g, there could be a much larger change in
the functions themselves.

If we consider the operations of addition, multiplication as repeated addition, a power as
repeated multiplication, all these operations accelerate change. Conversely, subtraction,
division, and logarithms of positive numbers to greater degrees decelerate change.

Consider the log function as undoing change, then applying to both sides of a relation and
comparing, we can determine a much-greater than relationship, and ‘if’ one exists, we infer
an infinity between the functions.

For example, in solving f z g if we find a ln f � ln g relationship. The undoing log operation
revealed a much-greater-than relationship.

Definition 3.1. We describe a logarithmic magnitude.

We say f �� g when ln f � ln g

We say f ≺≺ g when ln f ≺ ln g

We say f ‘log dominates’ g when f �� g.

We say f is ‘log dominated’ by g when f ≺≺ g.

The much-greater-than relation f � g may have a log dominating relation f �� g or be
log dominated by g: f ≺≺ g or no such relationship. That is the relations between the
magnitude and the logarithmic magnitude are not necessarily in the same direction. An
exception is when both positively diverge, see Proposition 3.1.

A logarithmic magnitude is like a derivative. A derivative’s sign is not necessarily the same
as the function’s sign. The much greater than relation is independent in direction to the log
dominating relation.

Logarithmic magnitude can describe non-reversible product arithmetic (Definition 2.2). 0·∞
indeterminate case arises in the calculation of the limit. We prove the non-reversible product
as a consequence of non-reversible addition (see Theorem 3.1).
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Example 3.1. Consider xn z n|n=∞ where |x| < 1.

xn z n|n=∞

ln(xn) (ln z) lnn|n=∞

n lnx (ln z) lnn|n=∞

n lnx � lnn|n=∞ (By Definition 3.1)

xn �� n|n=∞

While xn ≺ n|n=∞ as 0 ≺ ∞, the logarithmic magnitude of xn is much greater than n with
xn �� n|n=∞.

When simplifying products by non-reversible arithmetic, for example in the calculation of
limits, rather than solve with products, reason by exponential and logarithmic functions
which are each other inverses, converting the problem of multiplication to one with addition.
f · g = eln(f ·g) = eln f+ln g. If possible, apply non-reversible arithmetic: ln f + ln g = ln f or
ln f + ln g = ln g.

Example 3.2. When |x| < 1, evaluate xn · n|n=∞.

This is an indeterminate form 0 ·∞. xn ·n = xn|n=∞ is harder to understand than when the
problem is reformed and when simplifying, non-reversible arithmetic applied on a sum and
not a product.

xn · n|n=∞

= eln(xn·n)|n=∞

= en lnx+lnn|n=∞ (n � lnn then apply non-reversible arithmetic)

= en lnx|n=∞ (n lnx+ lnn = n lnx|n=∞)

= xn|n=∞

Theorem 3.1. Non-reversibility in a product. Let a and b be positive.

If a �� b then a · b = a

Proof. ab = eln(ab) = eln a+ln b = eln a = a, as a �� b then ln a � ln b.

Example 3.3. If we know the log magnitude relationship, we may directly calculate.
xn · n|n=∞ = xn|n=∞ as xn �� n|n=∞

Proposition 3.1. Let f =∞, g =∞. If f �� g then f � g.

Proof. f �� g then ln f � ln g. Since there is no smallest infinity, f2 = ln f = ∞, g2 =
ln g =∞. f2 � g2. By the following theorem: a =∞, b =∞, if a � b then ea � eb (see [8,
Table 2]) then f2 � g2, ef2 � eg2 , f � g.
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4 Limits at infinity

Definition 4.1. In context, we say f(x)|x=∞ then sup lim
x→∞

f(x), similarly inf lim
x→∞

f(x)

When the definition is put into a context such as a relation, since the condition is assumed
to be true for all n at infinity (else the condition is false and a contradictory statement), the
exact lower and upper bound language can optionally be excluded.

Example 4.1. Condition inf lim
n→∞

ρn > 1 becomes ρn|n=∞ > 1.

Similarly condition sup lim
n→∞

ρn < 1 becomes ρn|n=∞ < 1.

The following demonstrates the application of the notation and ideas discussed in this paper
about limits and the more general at-a-point evaluation.

In computation of limits, infinity can be as useful in simplifying expressions as infinitesi-
mals. So rather than dividing and forming the infinitesimals, instead apply arguments of
magnitude. Let the user choose. The non-reversible arithmetic works either way.

Example 4.2. A simple example will show this. 3n+5
5n
|n=∞ = 3n

5n
|n=∞ = 3

5
The justification

being 3n+ 5 = 3n|n=∞

Example 4.3. Apostol [1, 3.6.7], lim
x→0

x2−a2
x2+2ax+a2

, a 6= 0, x2−a2
x2+2ax+a2

|x=0, = −a2
a2

= −1 as

−a2 � x2|x=0 and similarly a2 � 2ax � x2|x=0

Example 4.4. Apostol [1, 7.17.28], lim
x→∞
{(x5 + 7x4 + 2)c − x}, Find c for non-zero limit

( c = 0 may collapse to 1 − x|x=∞). Using x5 + 7x4 + 2 = x5|x=∞ as x5 � x4 � x0|x=∞,
(x5 + 7x4 + 2)c − x|x=∞ = x5c − x|x=∞ = b then c = 1

5
as the difference reduces the power by

one to a finite value. I.e. a limit.

Example 4.5. (x5(1 + 7
x

+ 2
x5

))
1
5 − x|x=∞ = (x5(1 + 7

x
))

1
5 − x|x=∞

expand with the binomial theorem. (1+x)w = 1+wx+w(w−1)x
2

2!
+ . . ., (1+ 7

x
)
1
5 = 1+ 1

5
7
x

+
1
5
−4
5

72

x2
1
2

+ . . . then x(1+ 7
x
)
1
5 −x|x=∞ = x+ 7

5
+ 1

5
−4
5

72

x
1
2

+ . . .−x|x=∞ = 7
5

+ 1
5
−4
5

72

x
1
2

+ . . . |x=∞
= 7

5

Arguments of magnitude are commonly used in calculations. Apostol [1, pp 289–290] dis-
cusses polynomial approximations used in the calculation of limits, where the relation is
within the little-o variable.

Computing the terms separately lead to the indeterminate form 0/0; by computing the nu-
merator and denominator as a coupled problem, leading magnitude terms may be subtracted
(for example through factorization).
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When we remove little-o the calculation is not cluttered. If you need to be exact include it,
but if not then it may as well be omitted.

Using the identity 1
1−x = 1 + x+ x2 + . . ., 1

1−(x2

2
−o(x3))

= 1 + 1
2
x2 − o(x3) as x→ 0 becomes

1

1−x2

2

= 1 + x2

2
|x=0 Truncation is part of calculations context and assumed to be the case.

Applying the at-a-point notation to some limits. Since the series expressions have terms
forming a scale of infinities, often only a fixed number of terms with the expansions need be
used. Taylor series, the binomial expansion, trigonometric series and others can be viewed
as not unique since they have an infinity of terms.

Example 4.6. ax−bx
x
|x=0 = (ex ln a−ex ln b) 1

x
|x=0, expanding the exponential series for the first

three terms, ax−bx
x
|x=0 = (1 + x ln a + (x ln a)2 1

2
− (1 + x ln b + (x ln b)2 1

2
) 1
x
|x=0 = (x ln a −

x ln b) 1
x
|x=0 = ln a− ln b = lna

b

With known algebraic identities, such n
1
n |n=∞ = 1 or e = n

(n!)
1
n
|n=∞ can easily be used to

solve limits.

Example 4.7. [3, p.39, 2.3.23.b] , ( (n!)3

n3ne−n )
1
n |n=∞ = e( (n!)3

n3n )
1
n |n=∞ = e(( n!

nn )
1
n )3|n=∞ =

e( (n!)
1
n

n
)3|n=∞ = e(e−1)3 = e−2

The typical interchange between zero and infinity is useful.

x|x=0+ =
1

n
|n=∞ then f(x)|x=0+ = f(

1

n
)|n=∞

Example 4.8. [1, 7.17.18] lim
x→0−

(1−2x)sinx = lim
x→0−

(1−2x)x as sin(x) = x for small x. Show

y = 1. Let y ∈ ∗G : y = (1− 2x)x|x=0−, ln y = x ln(1− 2x)|x=0−, 0 · ∞ form.

With a log expansion, the problem can can be solved. ln(1 − 2x)|x=0− = 2x + (2x)2

2
+ (2x)3

3
+

. . . |x=0− = 2x|x=0−. ln y = x ln(1− 2x)|x=0− = x2x|x=0−, y = (e2x)x|x=0− = (e1)x|x=0− = 1

Example 4.9. Solve δδ = y, δ ∈ Φ. ln(δδ) = ln y, δ ln δ = ln y. Noticing δ · ln δ = 0 · −∞ =
1
∞ · −∞, which can be expressed as −∞/∞ and differentiated using L’Hopital’s rule, δ ln δ

= ln δ
1/δ

= 1/δ
−1/δ2

= −δ = 0 by (∗G,Φ) 7→ (R, 0), 0 = ln y then y = 1.

Since the magnitude {≺,�} and other relations are defined in terms of ratios, when com-
paring two functions in a “multiplicative sense”, we convert between the fraction and the
comparison.

Proposition 4.1. When f
g
∈ ∗G and z is defined in a “multiplicative sense”, g 6= 0

f

g
z 1⇔ f z g

11



Proof. Since no information is lost, and the operation is reversible, f
g
· g z 1 · g, f z g.

Consider the problem process f
g
⇒ f z g. f

g
= 1, (∗G = 1) 7→ (∗G = ∗G). Though

non-uniqueness also has advantages. (∗G z 1) 7→ (∗G z ∗G).

It is common for a problem to be phrased as if in R but in actuality is in ∗G. Then after
algebraically manipulating in ∗G, the information has to transfer back to R, or be phrased
as such.

In fractional form f
g

then becomes particularly convenient to apply what we know about
fractions to the comparison. For example we may transform the comparison to a point where
L’Hopital’s rule can be applied. With the extended number system ∗G, the indeterminate
forms 0/0 and ∞/∞ are expressed as Φ/Φ and Φ−1/Φ−1 respectively.

We proceed with another proof of L’Hopital’s rule where we use infinitary calculus theory
and work in ∗G. L’Hopital’s argument is interpreted in ∗G (see Proposition 4.2) and the
algebra is explained with non-reversible arithmetic, directly calculating the ratio (see [6]).

Lemma 4.1. A ratio of infinitesimals is equivalent to a ratio of infinities. Φ
Φ
≡ Φ−1

Φ−1

Proof. f, g ∈ Φ−1; f
g

=
1
g
1
f

, but ; 1
g
, 1
f
∈ Φ; then f

g
of the form Φ

Φ
. The implication in the

other direction has a similar argument. a, b ∈ Φ; a
b

=
1
b
1
a

, but ; 1
b
, 1
a
∈ Φ−1; then a

b
of the

form Φ−1

Φ−1 .

Proposition 4.2. f, g ∈ Φ; If lim
x→a

f ′(x)
g′(x)

exists then f(a)
g(a)

= f ′(a)
g′(a)

Proof. Since lim
x→a

f ′(x)
g′(x)

exists, we can vary about x = a in f and g. f(a)
g(a)

= f(a+h)
g(a+h)

|h=0 =

f(a)+f ′(a)h
g(a)+g′(a)h

|h=0. Choose h ∈ Φ : f ′(a)h � f(a) and g′(a)h � g(a). Then f(a) + f ′(a)h =

f ′(a)h|h=0, g(a) + g′(a)h = g′(a)h|h=0. f(a)+f ′(a)h
g(a)+g′(a)h

|h=0 = f ′(a)h
g′(a)h

|h=0 = f ′(a)
g′(a)

Theorem 4.1. L’Hopital’s rule (weak) in ∗G.

Proof. The indeterminate form 0/0 is represented by Φ/Φ in ∗G. A transfer Φ 7→ 0 confirms
this. The indeterminate form ∞/∞ is represented as Φ−1/Φ−1. Similarly a transfer Φ−1 7→
∞ confirms this.

The indeterminate form Φ−1/Φ−1 by Lemma 4.1 can be transformed to the indeterminate
form Φ/Φ.

Apply Proposition 4.2 to the indeterminate form Φ/Φ.
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Theorem 4.2. Comparison form of L’Hopital’s rule. If f/g is in indeterminate form Φ
Φ

or
Φ−1

Φ−1 , when f ′/g′ exists then f z g ⇒ f ′ z g′ where z ∈ {≺,∝,�}.

Proof. Equivalent to L’Hopital’s rule. See Theorem 4.1.

Example 4.10. f ′ � g′ ⇒ f � g. 1 � 1
n
|n=∞, n � lnn|n=∞.

Example 4.11. Applying L’Hopital’s rule reaches a 0 z ∞ form. Hence a much greater
than or much less than relationship. Solve lnx z x2|x=∞. This is in indeterminate form
∞ z ∞, differentiate. 1

x
(Dz) 2x|x=∞, 1

x
≺ 2x|x=∞, Dz = ≺, z =

∫
≺ = ≺ then

lnx ≺ x2|x=∞

If the limit exists then the comparison and limit are solved for f(x) ∝ g(x)|x=a as a standard
application of L’Hopitals rule with the comparison notation.

Example 4.12. Computing an indeterminate form 0/0. lim
x→2

3x2+2x−16
x2−x−2

, 3x2 +2x−16 z x2−

x−2|x=2, 0 z 0 form then differentiate. 6x+2 (Dz) 2x−1|x=2, 14 (Dz) 3, 3x2+2x−16
x2−x−2

|x=2 =
14
3

Example 4.13. Indeterminate form ∞/− ∞. v
ln v
|v=0 = 1

1/v
|v=0 = v|v=0 = 0 then v ≺

ln v|v=0. Since the relation could occur with the relation notation, v z ln v|v=0, 1 Dz 1
v
|v=0,

1 Dz ∞, Dz = ≺, z = ≺.

Example 4.14. [2, p.8] . Show Pm � Qn when m > n, given Pm(x) =
∑m

k=0 pkx
k and

Qn(x) =
∑n

k=0 qkx
k for positive coefficients. Let m = n+a, a > 0. Pm z Qn|x=∞, ∞ z ∞,

DnPm (Dnz) DnQn|x=∞, DnPm (Dnz) α|x=∞, βxa (Dnz) α|x=∞, βxa � α|x=∞,
integrating n times preserves this relation and solves for z.

Comparison can be in a “multiplicative sense”, or an “additive sense”. In the additive sense,
we treat the expression more as a relation with addition and we may add and subtract, but
drawing conclusions with much-larger-than relations may be problematic. 2x z 3x, 0 z x,
0 ≺ ∞, may then mistakingly draw the conclusion 2x ≺ 3x|x=∞. In the multiplicative sense,
divide by x, 2x ≺ 3x|x=∞, 2 ≺ 3 is false. Both comparisons are beneficial.

Example 4.15. Consider x2 � x|x=∞. By L’Hopital, x2 z x, 2x z 1, z = �.
By multiplicative z, x2 z x, x2

x
z 1, x z 1, z = �.

However a variation, divide by x, x z 1, 1 z 1
x
, realize the infinitesimal, 1 z 0, z = > does

not solve for �. In ‘realizing’ the infinitesimal information is lost as in R.

Example 4.16. [5, WolframMathworld] An occasional example where L’Hopital’s rule fails.
Applying the rule swaps the arguments to opposite sides. Since the relation is equality, this
is indeed true. u

(u2+1)
1
2
|u=∞, u z (u2 + 1)

1
2 |u=∞, d

du
u (Dz) d

du
(u2 + 1)

1
2 |u=∞, 1 z 1

2
(u2 +

1)−
1
2 2u|u=∞, (u2 + 1)

1
2 z u|u=∞. Applying arguments of magnitude, u

(u2+1)
1
2
|u=∞ = u

(u2)
1
2
|u=∞

= u
u
|u=∞ = 1
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