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Abstract

With the partition of positive integers and positive infinite integers, it follows natu-
rally that sequences are also similarly partitioned, as sequences are indexed on integers.
General convergence of a sequence at infinity is investigated. Monotonic sequence test-
ing by comparison. Promotion of a ratio of infinite integers to non-rational numbers is
conjectured. Primitive calculus definitions with infinitary calculus, epsilon-delta proof
involving arguments of magnitude are considered.

1. Introduction
2. Sequences and functions
3. Convergence
4. Limits and continuity
5. Epsilon-delta proof
6. A two-tiered calculus
7. A variable reaching infinity before another

1 Introduction

The discovery of infinite integers leads to the obvious existence of the infinitesimals [6, Part
1], as dividing 1 by an infinite integer is not a real number. However, it also does so much
more. For theorems, the separation of the finite and infinite is possible, rather than having
a single theorem which addresses both cases.

As sequences are indexed by integers, we similarly find that sequences can be partitioned.
The following investigates some of the mechanics of sequences, particularly at infinity. For
example it could be that over time sequences supersede sets. Sequences can be viewed as
more primitive structures.

2 Sequences and functions

We have extended the sequence notation to include intervals, as we deem that ‘the order’ is
the most important property.
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Definition 2.1. Join or concatenate two sequences. (a) + (b) = (a, b) A sequence can be
deconstructed. (a, b) = (a) + (b) The operator + is not commutative, (b) + (a) = (b, a), and
in general (b, a) 6= (a, b).

Definition 2.2. Compare sequences component wise on relation z. (a1, a2, . . .) z (b1, b2, . . .)
then (a1 z b1, a2 z b2, . . .)

Example 2.1. While we often use functions to state a comparison of sequences, we may use
sequence notation. Here, infinite positive integers are implied. (n) ≺ (n2)|n=∞

Definition 2.3. If a set has a ‘less than’ relation, the sequence of the set is ordered. If X
is the set, let (X) be the sequence of X with the order relation.

Example 2.2. (+Φ) is the ordered sequence of positive infinitesimals, (N∞) is the ordered
sequence of infinite positive integers, (+Φ−1) is the ordered sequence of positive infinite num-
bers, (N) is the ordered sequence of natural numbers, (N<) ordered sequence of finite natural
numbers.

We can iterate over infinity in the following way. Consider the infinite sequence 1, 2, 3, . . .
We can express this with a variable n. i.e. 1, 2, 3, . . . , n, n+ 1, n+ 2, n+ 3, . . . |n=∞.

Definition 2.4. Any integer sequence can be composed of both finite and infinite integers.

(1, 2, 3, . . . , k)|k<∞ + (. . . , n− 1, n, n+ 1, n+ 2, n+ 3, . . .)|n=∞

(N<) + (N∞)

With the establishment of the existence of the infinite integers, since a sequence is indexed by
integers we can partition the sequence into finite and infinite parts. Further all sequences with
integer indices, implicitly or explicitly are of this form. A finite sequence is deconstructed
with no infinite part.

Definition 2.5. Define a sequence at infinity (an)|n=∞ to iterate over the whole infinite
interval,

(. . . , an−2, an−1, an, an+1, an+2, . . .)|n=∞

or to count from a point onwards, generally in a positive direction.

(an, an+1, an+2, . . .)|n=∞

The concept of a sequence at infinity is particularly important, as we now can separate and
partition finite and infinite numbers.

Definition 2.6. A sequence can be deconstructed into both finite and infinite parts.

(a1, a2, . . .) = (a1, a2, . . . , ak)|k<∞ + (. . . , an, an+1, . . .)|n=∞

(a1, a2, . . .) = (ak)|1≤k<∞ + (aN∞)

(a1, a2, . . .) = (aN<) + (aN∞)
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What is striking is that at infinity there is no minimum or maximum elements. If n = ∞
is an infinity, so is n − 1, n − 2, . . .. Similarly for the continuous variable. If x = ∞, so is
x− 1, x− 2, . . .. While infinity has no lower or upper bound, we may find it useful to define
the ‘ideal’ min and max elements, as these can describe an interval.

Definition 2.7. Ideal minimum and maximum numbers
Let min(N∞) be an ideal minimum of the lowest positive infinite integer.
Let max(N∞) be an ideal maximum of the highest positive infinite integer.
Let min(+Φ−1) be an ideal minimum of the lowest positive infinite number.
Let max(+Φ−1) be an ideal maximum of the highest positive infinite number.

(. . . , n− 1, n, n+ 1, . . .)|n=∞ = (min(N∞), . . . ,max(N∞)) = (N∞)

(. . .+ [x− 1, x) + [x, x+ 1) + [x+ 1, x+ 2) + . . .)|x=∞ = (min(+Φ−1),max(+Φ−1)) = (+Φ−1)

Considering 1, 2, 3, 4, . . . , we believe that the infinity was thought of as an open set, (1, 2, . . .),
but with infinite integers, this may be better expressed with an interval notation [1, 2, . . . ,∞].

Definition 2.8. An interval can be deconstructed into real and infinite real parts

(α,∞] = (x)|α<x<∞ + (+Φ−1)

That there is no infinite integer lower bound often does not matter. Once we arrive at
infinity, we may iterate from a chosen point onwards.

Example 2.3. In describing the function 1
n

as a sequence, we often say (1
2
, 1

3
, . . .) which

includes both finite and infinitesimal numbers. By considering the infinite sequence, ( 1
n
)|n=∞

we now are describing the infinitesimals only.

We would like to iterate over infinity for various reasons. On occasion it is necessary to
iterate not over all the infinities, but between two infinities. For example, like with NSA
(Non-Standard Analysis), iterate between two infinities ω and 2ω. In our notation, we can
start counting at infinity, till we reach the next infinity. Construct an auxiliary sequence for
this purpose.

(an+1, an+2, . . . a2n) = (b1, b2, . . . bn) where bk = an+k|n=∞

From another perspective, we can use the same notation to iterate over all infinity. Iterating
over infinity at infinity, so that the finite part is removed, (an+k)|k=n=∞ iterates over all the
infinite elements.

While there is no lower infinite bound for the infinite integers, this is not really a problem as
we need not consider all infinite elements, but elements from a certain point onwards, hence
Definition 2.5.
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We require sequences at infinity when building other structures at infinity. The ordering
property of sequences is separate to sets, which by their definition are unordered.

Sequences can be transformed and or rearranged, from one sequence to another, with an in-
finity of elements, in such a way to guarantee a property based on the order. Our subsequent
papers [9], [10] both require sequences in the ideas and proofs.

Sequences are not restricted to discrete variables. As we can consider a function as a con-
tinuous sequence of points, we extend the sequence notation to the continuous variable. We
would then consider the index which is also a continuous variable, the domain.

Example 2.4. Partition the interval, [α,∞] = (x)|x=[α,∞] = (x)|[α,x<∞) + (x)|+Φ−1 or
[α,+R) + (+Φ−1).

Definition 2.9. We say a function is “monotonically increasing” if f(x+δ) ≥ f(x), “mono-
tonically decreasing” if f(x+ δ) ≤ f(x), δ ∈ Φ.

Definition 2.10. We say a sequence is “monotonically increasing” if an+1 ≥ an, “mono-
tonically decreasing” if an+1 ≤ an.

Definition 2.11. We say a sequence or function has “monotonicity” if the sequence or
function is monotonic: monotonically increasing or monotonically decreasing.

Determine if a function is monotonic by comparing successive terms and solving for the
relation. For a continuous function we can often take the derivative. However, for sequences
this may not be possible.

Conjecture 2.1. We can determine the monoticity of sequence an|n=∞ by solving for relation
z in ∗G, an+1 z an|n=∞, or if it exists its continuous version a(n+ 1) z a(n).

Example 2.5. Determine if the sequence (an)|n=∞ is monotonic. an = 1
n2 , compare se-

quential terms, an+1 z an|n=∞, 1
(n+1)2

z 1
n2 |n=∞, n2 z (n + 1)2|n=∞, n2 z n2 + 2n + 1|n=∞,

0 z 2n+ 1|n=∞, z = <, an+1 < an and the sequence is monotonically decreasing.

Example 2.6. Test if the sequence (an)|n=∞ is monotonic, an = 1

n
1
2 +(−1)n

|n=∞. Let j =

(−1)n, an z an+1|n=∞, 1

n
1
2 +j

z 1

(n+1)
1
2−j
|n=∞, (n + 1)

1
2 − j z n

1
2 + j|n=∞, (n + 1)

1
2 −

n
1
2 z 2j|n=∞, using the binomial theorem (n + 1)

1
2 − n

1
2 = n−

1
2 |n=∞ = 0, 0 z 2j|n=∞,

0 z (−1)n|n=∞, z = <, >, . . . then (an)|n=∞ is not monotonic.

Example 2.7. An example of when not to apply infinitary argument simplification a+b = a.

Test if the sequence an = 1

n
1
2 +(−1)n

|n=∞ is monotonic. n
1
2 � (−1)n|n=∞, if we say an =

1

n
1
2 +(−1)n

|n=∞ = 1

n
1
2
|n=∞, the sequence ( 1

n
1
2

)|n=∞ is easily shown to be monotonic. However

example 2.6 shows the sequence is not monotonic. Even though the magnitude is infinitely
small compared with the other function, the property of monoticity by adding (−1)n was
changed.
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3 Convergence

We now move on to a more theoretical use of at-a-point definition. The Cauchy convergence,
Cauchy sequence and limit, can be defined at infinity instead of both a finite and infinite
perspective definition. Given that a number system exists at infinity and zero, this is more
than justified, and since the definitions may be more primitive, may subsume the standard
definitions.

The problem with both the limit existence and the Cauchy sequence convergence is that
they both define convergence to the point to include the point of convergence in the same
space. While this is incredibly useful it is a subset of a more general convergence.

For example Hille [5, p.17, Theorem 1.3.1] already assumes complex numbers, zk ∈ C and
defines Cauchy convergence

|zm − zn| < ε for m,n > M(ε).

Then provides the following corollary from the definition, expressed as a limit. [5, p.71
(4.1.12)]

lim
m,n→∞

||zm − zn|| = 0

However turning this around, the corollary is the more primitive operation, that being their
difference is zero. Make this the definition, defining a sequence as converging at infinity
(Definition 3.3) and derive the Cauchy sequence (Definition 3.4).

Definition 3.1. Convergence is the negation of divergence.

Definition 3.2. A sequence with singularities diverges.

Theorem 3.1. A sequence without singularities before infinity can only diverge at infinity.

Proof. Every finite sequence converges because the number of terms is finite and the terms
are not singularities.

Corollary 3.1. For a sequence without finite singularities, convergence or divergence is
determined at infinity.

Proof. Since convergence is defined as the negation of divergence (Definition 3.1), and di-
vergence can only happen at infinity (Theorem 3.1), then both convergence and divergence
can only be completely determined at infinity. Note: this does not contradict finite sums
converging, as at infinity their sum is 0.

Definition 3.3. A sequence (an) converges at infinity if given {m,n} ∈ N∞:

am − an|∀m,n=∞ ' 0
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Definition 3.4. A Cauchy sequence converges if the sequence (xn)|n=∞ converges (Definition
3.3) and the finite and infinite numbers are the same type of number. n < ∞ then xn ∈ W
and xm|m=∞ ∈ W

In Definition 3.3 of sequence convergence, the number types can be different as Φ is com-
posed of the infinireals. Cauchy convergence Definition 3.4 derives from defining convergence
Definition 3.3.

Similarly the limit definition changes. Define evaluation at a point, then define the limit
as the evaluation at the point and in the same space. Definition 4.5 the limit derives from
Definition 4.4 evaluation at a point.

The idea of a sequence not being convergent because it is not ‘complete’ is a narrow view.

Consider the computation of two integer sequences an an bn where their ratio for finite
values is always rational, but what they are approximating is not. The Cauchy sequence
convergence does not explain the differing number types, only convergence.

The limit fails to be defined when a ratio between these two sequences is considered. This is
a simple operation. The best answer that can explain the calculation is that at infinity the
ratio is promoted, a rational approximation at infinity can be promoted to a transcendental
number.

Conjecture 3.1. There exists ratios of infinite integers of the form N∞
N∞ which can be trans-

fered to real numbers.

Since all irrationals including transcendental numbers are calculated by integer sequences,
such a restriction on the ratio of two integer sequences not converging is absurd. Such
sequences do converge at infinity.

If an
bn
|n=∞ converges at a point not in the limit.

If {an, bn} ∈ N are integers, an
bn
∈ Q, but an

bn
→ Q′ then lim

n→∞
an
bn

does not exist. However

an
bn
|n=∞ does not have this restriction. an

bn
|n=∞ ∈ J∞

J∞ ∈ Q∞, but Q∞ for any non-rational
number approximation is promoted to Q′, if the approximation exists in R.

These rational approximations are common. All calculations of numbers in R are reduced to
integer calculations. However such calculations need to be explained in a higher dimension
number, at least with R∞ because infinite integers are involved.

Example 3.1. Construct an integer sequence to approximate
√

3. Hence, we consider
√

3
as the ratio of two infinite integers at infinity. (x − 1)2 = 3 has a solution x = 1 +

√
3.

x2− 2x+ 1 = 3, x = 2 + 2
x
. Develop an iterative scheme. xn+1 = 2 + 2

xn
. Assume an integer

solution, xn = an
bn

. an+1

bn+1
= 2 + 2bn

an
, an+1

bn+1
= 2an+2bn

an
. Let bn+1 = an then an+1 = 2an + 2an−1.

For two initial values, a0 = 1, a1 = 1, a2 = 2a1 + 2a0 = 2 · 1 + 2 · 1 = 4, the sequence
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generated is (1, 1, 4, 10, 28, 76, 208, 568, 1552, . . .).
√

3 = an
bn
− 1 = an+2an−1

an
|n=∞.

The way around this difficulty by saying it is not important through definition is problem-
atic. Simply promoting the two numbers being divided to the same number system (as
demonstrated by Hille [5, p.17, Theorem 1.3.1]), so that by definition and only by definition
they are the same number type; and therefore the ratio converges in the same space, is
incomplete.

The alternative Definition 3.3 define the same concept more generally. Admittedly the
problem of ‘promotion’ is not explained, but is acknowledged.

While this may be a controversial finding, it suggests either that notions of convergence
have not been entirely settled, or that they are incomplete. Especially for the most basic
operations.

In summary, there are two problems with the Cauchy sequence. It is derived from a more
general convergence, and is better explained in a space at infinity, with infinite integers.

4 Limits and continuity

The standard epsilon definition of a limit Definition 4.1 can be improved by explicitly defining
{ε, δ} ∈ Φ+ as, by the conditions, these numbers become infinitesimals. Therefore this is an
implicit infinitesimal definition.

Definition 4.1. The symbol lim
x→p

f(x) = A means that for every ε > 0, there is a δ > 0 such

that
|f(x)− A| < ε whenever 0 < |x− p| < δ.

If we consider a limit definition [1, p.129] given by Apostol, we can generalize the definition
in ∗G to include infinitesimals, thereby making the definition explicit. A statement with
infinitesimals, let ε ∈ +Φ: |f(x)−A| < ε can be equivalently expressed: f(x)−A ∈ Φ∪{0}.

Definition 4.2. The symbol lim
x→p

f(x) = A in ∗G means that when x−p ∈ Φ then f(x)−A ∈
Φ ∪ {0}.

Example 4.1. lim
n→∞

n3+ 1
n

4n3 = lim
n→∞

3n2−n−2

12n2 = lim
n→∞

6n+2n−3

24n
= lim

n→∞
6−6n−4

24
= 1

4
− 1

4n
|n=∞

The limit lim
n→∞

an
bn

in R implicitly applies a transfer ∗G 7→ R [8, Part 4]. A limit in ∗G
(Definition 4.2) by default does not do a transfer, but this is easily done.
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Proposition 4.1. If a limit exists in R then ∗G 7→ R: in ∗G, st(lim
x→p

f(x)) = lim
x→p

f(x)) in

R.

Proof. R is a subset of ∗G. Then a transfer must exist, since limits are actually calculated
in ∗G. During the transfer, infinitesimals are mapped to zero, Φ 7→ 0.

Limits and continuity are tied together in R, however we will see that this is often not the
case in ∗G. For example, we can have a discontinuous staircase function in R which is
continuous in ∗G.

However, we can similarly define continuity in ∗G with limits. Since this is before the transfer
principle ∗G 7→ R is applied then there is no paradox. We believe that the definition of
continuity via limits has the advantage of an ‘at-a-point’ perspective.

Consider the ‘principle of variation’, which for a continuous variable is the ‘law of adequality’
[13, p.5]: d(f(x)) = f(x + δ) − f(x) leads to the derivative, as a ratio of infinitesimals.

df(x) = f(x+ dx)− f(x), df(x)
dx

= f(x+dx)−f(x)
dx

|dx=0

However, the principle of variation is also applicable to discrete change, where dn = (n +
1) − n = 1 is a change in integers, which we interpret to derive a derivative of a sequence
[10].

Continuity can be defined either by the principle of variation or the limit. Continuity can
be expressed as a variation; taking two points infinitesimally close, and their difference is an
infinitesimal.

Definition 4.3. A function f : ∗G→ ∗G is continuous at x; f(x), x, y ∈ ∗G; δx, δy ∈ Φ;

y = f(x)

y + δy = f(x+ δx)

Definition 4.4. A function f : ∗G→ ∗G is continuous at x = a and has been evaluated to
L: f(x)|x=a = L,

If ∀x : x ' a then f(x) ' L.

x ' a is equivalent to x+ δ = a when δ ∈ Φ or x = a [7, Part 2 Definition 3.7].

Lemma 4.1. Definition 4.3 implies Definition 4.4.

Proof. Consider Definition 4.3. y+ δy = f(x+ δx)|x=a, y ' f(x+ δx)|x=a, let L = f(x)|x=a,
L ' f(x+ δx)|x=a, L ' f(x)|x'a
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A definition of a limit, less general than a definition of evaluation at a point is given.

Definition 4.5. A function f : ∗G→ ∗G is a limit at x = a if f(x) is continuous at x = a
and is the same number type W .

If f(x)|x=a = L and {f(x), L} ∈ W then f(x)|x=a is a limit.

The symbol lim
x→a

f(x) = L in ∗G means that when x ' a then f(x) ' L.

Considering the larger picture between the two-tiered number systems. What is being
claimed is that providing a finite and infinite perspective definition does not describe well
what is happening, particularly when “at infinity” simplifies the explanation. These ideas
of defining at infinity extend into many other definitions.

As there appear to be different kinds of arithmetics and convergence as governed by what
happens at infinity, defining convergence in general at infinity makes more sense.

Example 4.2. Define x > 1 :
∑∞

k=0 x
k = 1

1−x . Then we can have an infinite sum with

positive terms that has a negative solution. Let 1
1−x = −w, solve for x, x = 1+w

w
. Case

w = 2, x = 3
2
,
∑∞

k=0(3
2
)k = −2.

Not only has a positive sum of terms become negative, we needed an infinity of terms to
interpret the sum, for the sum to have meaning.

This example is relevant because our applications following this series [9, Convergence sums]
define convergence at infinity, as does Robinson’s non-standard analysis (here infinity defined
as not finite is interpreted as successive orders of numerical infinities ω).

5 Epsilon-delta proof

We again look at the limit in the guise of the epsilon-delta proof. [4] comments on the
generalization in multidimensional space with the norm and open balls.

For complex proofs, NSA has been successful as an alternative to Epsilon-Delta management,
and other proofs solving in the higher number system and transferring the results back
into the reals. We would expect our calculus to also be useful in proving propositions and
theorems, with similar purpose to NSA but in another way.

An epsilon-delta definition proof, if |x − x0| < δ then |f(x) − f(x0)| < ε, in a minimalistic
sense is not a finite inequality, but an inequality at infinity with infinitesimals, as we can
derive the finite inequality. By the transfer principle, project the statement from ∗G into R.
E.g. δ1 ∈ Φ; δ2 ∈ R+; (∗G, |x− x0|δ1) 7→ (R, |x− x0|δ2)
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An abstraction, by removing the inequality relation, expressing the relation as a variable
which is infinitesimal, hence a more direct reasoning.

Definition 5.1. The Epsilon-Delta Proof with Φ

If x− x0 = Φ then f(x)− f(x0) = Φ, n =∞.

Example 5.1. [3, Epsilon-Delta Proof] f(x) = ax + b; a, b ∈ R; a 6= 0. Show f(x) is
continuous.

x− x0 = Φ

f(x)− f(x0) = (ax+ b)− (ax0 + b)

= a(x− x0) = Φ (as aΦ = Φ)

An Epsilon-Delta definition and proof with a similar structure [4] could be given where the
real numbers are replaced by ∗G. For example it may not be enough that the numbers
are infinitesimals (Definition 5.1), but we may require the infinitesimals to be continually
approaching 0. (See Proposition 6.2)

δn → 0 replaced with δn � δn+1

Definition 5.2. The Epsilon-Delta Proof in ∗G

δn = x− x0 ∈ Φ; εn = f(x)− f(x0) ∈ Φ; n =∞

If δn � δn+1 then εn � εn+1

6 A two-tiered calculus

We can work in ∗G and project back or transfer to R or R, or ∗G. The overall reason
for doing this was a separation of the finite and infinite domains, thereby separating and
isolating the problem.

We introduce the following sequence definitions as a consequence of a two-tiered calculus. It
is possible for a sequence to plateau in ∗G and project back to a convergent sequence in R.
Similarly a divergent sequence could plateau in ∗G and diverge in R. We need to be able to
describe arbitrarily converging and diverging sequences to guarantee certain properties and
avoid the plateau. Hence, additional requirements are needed to manage the sequences.

Definition 6.1. We say xn → 0 then xn ∈ Φ and is decreasing in magnitude: |xn+1| ≤ |xn|.

Definition 6.2. We say xn → ∞ then xn ∈ Φ−1 and is increasing in magnitude: |xn+1| ≥
|xn|.
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Since a variable may be expressed as a point, the sequences described can be extended to
the continuous variable. An adaptable notation, given that we may need different sequences
for particular problems and theory.

For example, x→∞, (x) indefinitely increases and is positive monotonic, f(x)|x=∞ = . . .

The other type of sequences in general use are a partition. For example, for all x > x0.

Definition 6.3. In context, a variable x→ 0 can be described at zero by x ∈ Φ or Definition
6.1 or Definition 6.6 or other as |x=0.

Definition 6.4. In context, a variable x → ∞ can described at infinity by x ∈ Φ−1 or
Definition 6.2 or Definition 6.7 or other as |x=∞.

Definition 6.5. A ‘subsequence’ is a sequence formed from a given sequence by deleting
elements without changing the relative position of the elements.

Definition 6.6. We say a sequence is ‘indefinitely decreasing’ in magnitude. xn → 0; n,
n2 ∈ N∞; there exists n2 : n2 > n and xn2 ≺ xn.

Definition 6.7. We say a sequence is ‘indefinitely increasing’ in magnitude. xn → ∞; n,
n2 ∈ N∞; there exists n2 : n2 > n and xn2 � xn.

Proposition 6.1. If xn → 0 is indefinitely decreasing there exists a subsequence (νn) :
νn+1 ≺ νn|n=∞ and νn → 0

Proof. Since xn is decreasing in magnitude, we can always choose a subsequent much-less-
than term.

We use infinity arguments with order (See Section 7) in the proof of Proposition 6.2. Nor-
mally we would send h → 0 before δ → 0. However, if the solution is independent of the
infinity, consider δ → 0 before h → 0. Then we reason that the derivative must be an
infinitesimal.

Proposition 6.2. If δn → 0 is indefinitely decreasing and strictly positive monotonic de-
creasing then

Dδn|n=∞ ∈ −Φ

Proof. h ∈+Φ; Strictly monotonic decreasing δn then δn+1 < δn, δn+1 − δn < 0, δn+1−δn
h

< 0,

Dδn = δn+1−δn
h
|h=0 is negative.

Consider the infinite state where δn → 0 before h → 0. Since δn can be made arbitrarily
small, then δn+1 − δn ≺ h, δn+1 − δn ∈ Φ, δn+1−δn

h
|h=0 ∈ Φ, Dδn ∈ Φ.
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Lemma 6.1. If f(x) and g(x) are positive monotonic functions, with relation z : z ∈ {<,≤
, >,≥}, f(x) z g(x) for all x in a given domain, such a relation can be reformed to a positive
inequality: φ > 0 or φ ≥ 0

Proof. A less than relation can always be expressed as a greater than relation by swapping
the arguments sides. If f < g then g > f . If f ≤ g then g ≥ f . If f(x) > g(x) then
f(x)− g(x) > 0. If f(x) ≥ g(x) then f(x)− g(x) ≥ 0.

Proposition 6.3. z ∈ {>,≥}; If f(x) z 0 and f(x) is monotonically increasing then
Df(x) z 0 where f(x) is not constant.

Proof. h ∈ Φ+, f(x + h) z f(x), f(x + h) − f(x) z 0, f(x+h)−f(x)
h

z 0, f(x+h)−f(x)
h

|h=0 z 0,
Df(x) z 0

Proposition 6.4. z ∈ {>,≥}; If f(x) and g(x) are positive monotonic functions: f(x) z g(x)
over a positive domain then Df(x) z Dg(x), where f(x)− g(x) is monotonically increasing.

Proof. Reorganise the relation to be positive, Lemma 6.1. Apply Proposition 6.3.

Proposition 6.5. If f � 0 and f is a positive monotonic increasing function then ignoring
integration constants and integrating in a positive interval,

∫
f � 0.

Proof. Since integrating an infinitesimal or infinity does not result in 0, then integral must
have a much-greater-than relationship with 0.

Theorem 6.1. Let f and g be positive monotonic functions: f � g. If integrated over a
positive interval ignoring integration constants then

∫
f �

∫
g.

Proof. f � g, f − g � 0, apply Proposition 6.5.

This infinitesimal and infinitary analysis is more suited to a functional approach and does
not explicitly use sets, compared with NSA. Hence the complexity of use would likely make
this calculus more accessible. We have found, empirically, different solutions to problems
and in many cases simpler reasoning than with standard calculus, such as found in [2]. That
is, we have constructed a new calculus of sum convergence [9].

The following propositions define continuity and calculus in ∗G.

Proposition 6.6. A function f : ∗G 7→ ∗G is uniformly continuous if f(x) ' f(y) when
x, y ∈ ∗G and x ' y.
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Proposition 6.7. A function f : ∗G 7→ ∗G is differentiable at x ∈ ∗G if there exists b ∈ ∗G:

f(x)− f(a)

x− a
' b when x ' a

Many of the classical results can be proved in ∗G. Assuming the Taylor series in ∗G with
arbitrary truncation, that is a well-behaved function, prove Newton’s method.

Theorem 6.2. When f(xn+1) ≺ f(xn)|n=∞ and xn+1 ' xn|n=∞ then xn+1 = xn− f(xn)
f ′(xn)

|n=∞

Proof. h, f(xn) ∈ Φ; xn, f (w)(xn) ∈ ∗G

f(xn + h) = f(xn) + hf ′(xn) +
h2

2!
f ′2(xn) + . . . |n=∞|h=0 (Assume continuity)

f(xn + h) = f(xn) + hf ′(xn)|n=∞|h=0 (Choose h = xn+1 − xn)

f(xn+1) = f(xn) + (xn+1 − xn)f ′(xn)|n=∞ (Non-reversible arithmetic)

(f(xn)− f(xn+1) = f(xn)|n=∞ as f(xn) � f(xn+1)|n=∞)

0 = f(xn) + (xn+1 − xn)f ′(xn)|n=∞ (Solve for xn+1)

xn+1 = xn −
f(xn)

f ′(xn)
|n=∞ (Transfer principle ∗G 7→ R)

7 A variable reaching infinity before another

With the knowledge of partial derivatives, there should be no argument against a variable
reaching infinity before another. That this is not taught or seen this way, once stated should
be accepted as fact.

The partial derivative is equivalent to one variable reaching infinity before the
other variables.

With the finite and infinite separation, we will seek further mathematics. The order of
one variable reaching infinity before another is common as demonstrated by partial differ-
ential equations. We also have other language to capture the infinite state, such as ‘the
characteristic differential equation’.

This raises the possibility of combinations of variables reaching infinity in differ-
ent orders. The algebra and space is amazingly complex, yet understandable.

Rather than purge mathematics of complexity for certainty, a consideration of orderings we
believe has led to new rearrangement theorems and analysis (see [9], [11]). This is a necessary

13



correction to current mathematics which rejects infinitary calculus and Euler in superficial
ways.

Uniform convergence, absolute sum convergence and other concepts, which for example high-
light when the problem is independent of the order, could be investigated with orderings.

Turning the problem around, if the ordering does not matter, we only need to find the
solution of one ordering to determine the whole solution. (for example sum rearrangements
at infinity [11])

Example 7.1. See Proposition 6.2

Example 7.2. The ellipse transforming into a parabola when the focus was sent to infinity.
See [8, Example 2.1].

An example of a variable reaching infinity before another explains what others claim is
‘extraordinary reasoning’.

TODO - refer to ellipse to parabola example in the Transference Part 4 paper Example 2.1.
Double link, so it points to this paper.

Example 7.3. In following and explaining Euler’s derivation of the exponential function
expansion for ex, Robert Goldblatt [14, p.8] describes Euler’s reasoning

j(j − 1)(j − 2) . . . (j − n+ 1)

jn
|j=∞ = 1

as extraordinary. However, the calculation is explained by one variable reaching infinity
before the other.

Firstly, consider the numerical evidence. j
j
|j=∞ = 1; j(j−1)

j2
|j=∞ = 1; j(j−1)(j−2)

j3
|j=∞ = 1; . . .

If we consider the general n term, we arrive at the expression j(j−1)(j−2)...(j−n+1)
jn

|j=∞ If j =∞
before n = ∞, then from j’s perspective, n is a constant. This is no different from the
partial derivative case. Hence, simplify the constant by non-reversible arithmetic, j(j −
1)(j − 2) . . . (j − n+ 1)|j=∞ = jn|n=∞ and the result follows.

Consequently, j � n|j,n=∞. There is the possibility of developing algebra for these situations,
to analyse the mathematics.

We should point out that this is not the only possibility at infinity (as noted in subsequent
papers there is algebra where lower order terms prevail at infinity), and that non-uniqueness
exists at infinity. However, it ‘is’ a valid possibility.

For the given problem, we can state Euler’s reasoning in ∗G.

14



ω ∈ Φ; j = x
ω

; x 6∈ R∞; ω = x
j

and j ∈ Φ−1; consider the Binomial expansion in ∗G, which
is most likely acceptable as we believe ∗G is a field.

(1 + kω)j = 1 + j
kω

1!
+ j(j − 1)

(kω)2

2!
+ . . .

= 1 +
∞∑
n=1

j(j − 1)(j − 2) . . . (j − n+ 1)
knωn

n!
|j=∞

= 1 +
∞∑
n=1

j(j − 1)(j − 2) . . . (j − n+ 1)

jn
knxn

n!
|j=∞

= 1 +
∞∑
n=1

knxn

n!
|j=∞

Hence, in this case Euler’s logic is justified and explained in a more rigorous way, in the
exact way Euler stated. Euler was not in error, but exactingly correct.

Choosing k = 1

(1 + ω)
x
ω =

∞∑
k=0

xn

n!

If x = 1 then (1 + ω)
1
ω = e. (1 + ω)

x
ω = ((1 + ω)

1
ω )x = ex then ex =

∑∞
k=0

xn

n!
.
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