Abstract

TSC-Jitterbug Pd-D fusion with 147-atom Palladium clusters containing Deuterium in Sodium Zeolite Y cages produces energy that can be carried from the Deuterium electrons to the Palladium electrons to the Zeolite electrons, thus heating the Zeolite, which heat can be released as needed by reacting with D2O to form steam. If the Water that is initially in the Zeolite and released as the Zeolite is heated by fusion is Hydrogen water, then the Hydrogen could contaminate the Pd cluster Deuterium and impair the TSC fusion process so all Zeolite used for TSC-Jitterbug Pd-D fusion should be of the form \(A_mX_pO_{2p} \cdot nD_2O \) that is, all the water in the Zeolite used for Pd-D fusion should be Heavy Water D\(_2\)O which can be accomplished by taking ordinary Zeolite, then heating it to flush out all the Ordinary Water H\(_2\)O and then cooling it with Heavy Water D\(_2\)O to give \(A_mX_pO_{2p} \cdot nD_2O \)
TSC-Jitterbug Pd-D fusion with 147-atom Palladium clusters containing Deuterium in Sodium Zeolite Y cages

is described in some detail in my papers at

http://vixra.org/abs/1501.0234
http://vixra.org/abs/1502.0069

If each 147-atom Palladium cluster is embedded into a Zeolite cage then the fusion energy can be carried from the Deuterium electrons to the Palladium electrons to the Zeolite electrons, thus heating the Zeolite, which heat can be released as needed by reacting with D20 to form steam.

"... Zeolite is a aluminosilicate mineral ... consisting of three dimensional networks of AlO₄ and SiO₄ tetrahedra linked by ... oxygen atoms ... which contains crystal water. Its general chemical formula is

AₘXₚO₂ₚ · nH₂O

Where A represents Ca, Na, K, Ba, and Sr; X represents Al and Si. ...

When zeolites are heated, water molecules in it escape, and heat energy is stored in it ...

nH₂O + hot AₘXₚO₂ₚ

... in the meantime; when water molecules are adsorbed again, the heat energy in zeolites is released ...

AₘXₚO₂ₚ · nH₂O + (hot ambient H₂O = steam)
If the $n\text{H}_2\text{O}$ that is initially in the Zeolite and released as the Zeolite is heated by fusion is Hydrogen water, then the Hydrogen could contaminate the Pd cluster Deuterium and impair the TSC fusion process.

so all Zeolite used for TSC-Jitterbug Pd-D fusion should be of the form $A_{mXpO_{2p}} \cdot nD_2O$

that is, all the water in the Zeolite used for Pd-D fusion should be Heavy Water D_2O which can be accomplished by taking ordinary Zeolite then heating it to flush out all the Ordinary Water D_2O and then cooling it with Heavy Water D_2O to give $A_{mXpO_{2p}} \cdot nD_2O$

so that the overall process looks like

As to how the Water is configured in the Zeolite:

“... We report ... Monte Carlo simulations of water ... adsorption in [Zeolite] NaY ... faujasite ... The existence of cyclic water hexamers ... located in the 12-ring windows ...”

... recently disclosed by neutron diffraction experiments ... were ... observed in the case of NaY ...