The Abstract

An Approximation to the Mass Ratio of the Proton to the Electron. The mass ratio of the proton to the electron is a dimensionless physical constant. The following expression provides a good estimate.

$$
\begin{equation*}
(4 \pi)\left(4 \pi-\frac{1}{\pi}\right)\left(4 \pi-\frac{2}{\pi}\right)=1836.15 \tag{1}
\end{equation*}
$$

The above expression is also the greatest lower bound (GLB) for a more general expression. A geometric persuasion is given and the more general expression is determined via the inversion of the spheres.
harry.watson@att.net

The System: The system consists of two objects: a ball of radius one and a line segment of length 4π. Recall that a ball, B, with center $\left(x_{0}, y_{0}, z_{0}\right)$ and radius r is the point set $\left\{(x, y, z) \mid \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}} \leq r\right\}$. Write $B\left[\left(x_{0}, y_{0}, z_{0}\right), r\right]$. Let the line segment be attached to the ball at one endpoint and tangent to the surface of the ball. Let the point of attachment have Cartesian coordinates $(0,0,0)$. Let let O represent the origin, $(0,0,0)$.

Figure 1: "The Ball and Stick Model"
In Figure 1, we have the "Ball and Stick" model. Figure 1 is drawn to scale. From this model, this system, we will obtain an approximation to the proton-to-electron mass ratio. This is presented in Equation (2).

$$
\begin{equation*}
(4 \pi)\left(4 \pi-\frac{1}{\pi}\right)\left(4 \pi-\frac{2}{\pi}\right)=1836.1517239 \ldots \tag{2}
\end{equation*}
$$

The line segment $[0,4 \pi]$ defines a ball with center O and radius 4π in threespace. $(B[O, 4 \pi])$ Likewise, the unit ball defines a concentric ball of radius two. $(B[O, 2])$ Recall that a sphere is the surface of a ball. Define the sphere with center $\left(x_{0}, y_{0}, z_{0}\right)$ and radius r to be the point set

$$
S\left[\left(x_{0}, y_{0}, z_{0}\right), r\right]=\left\{(x, y, z) \mid \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r\right\}
$$

We perform the Inversion of the Spheres with respect to $S[O, 2]$. The point set exterior to $B[O, 4 \pi]$ maps to $B[O, 1 / \pi]$, a ball of radius $1 / \pi$, while $O \leftrightarrow$ ∞. We have assumed that the system consists of two elements and no more, so the ball with center O and radius $1 / \pi$ is empty, except for its surface. If there are additional elements in the space, a more general process must be defined. Collapse $B[O, 4 \pi]$ to $B[O,(4 \pi-1 / \pi)]$. What is to be done with $S[O, 1 / \pi]$?

The sector, or family of sectors, in $B[O,(4 \pi-1 / \pi)]$, with $S[O, 4 / \pi]$, must be subtracted from $B[O,(4 \pi-1 / \pi)]$. Fortunately, the volume generated by one sector equals the volume generated by the sum of sectors in a given ball. We only need to examine one sector whose "cap" surface area is $4 \pi(1 / \pi)^{2}=$
$4 / \pi$. Once this is done (see exercise in geometry), the volume of the reduced solid, $B[O,(4 \pi-1 / \pi)]$, minus the sector, is given by Equation (3).

$$
\begin{equation*}
V_{\text {ball }}-V_{\text {sector }}=\left(\frac{4 \pi}{3}\right)\left[(4 \pi)\left(4 \pi-\frac{1}{\pi}\right)\left(4 \pi-\frac{2}{\pi}\right)\right] \tag{3}
\end{equation*}
$$

Two Balls: The original hypothesis states that there are two elements, a ball and a line segment. In the real world, fundamental particles often arise due to pair production. In the presence of matter a sufficiently energetic electromagnetic photon may create a positron-electron pair. We introduce a second ball of unit radius, not attached to the line segment. We stated "If there are additional elements in the space, a more general process must be defined." The volume of the figure $B[O,(4 \pi-1 / \pi)]$ minus the sector and containing the image of the red ball is greater than the value given in Equation (3). The value of R in Figure 3 is $4 \pi-\pi^{-1}$; the value of h is
\qquad

Figure 2: "The Ball and Stick Model with Free Ball"
calculated in the exercise. The tiny red dot in Figure 3 indicates the image of the red ball which was exterior to $B[O, 4 \pi]$ prior to inversion. This red ball image must be contained in one of the empty sectors and its volume after inversion must be added to the overall volume.

$$
V_{\text {total }}=V_{\text {ball }}-V_{\text {sector }}+V_{\text {image }}
$$

Where $V_{\text {ball }}=$ the volume of $B\left(O,(4 \pi-1 / \pi), V_{\text {sector }}\right.$ is the volume of the sector whose cap surface area is $4 \pi / \pi^{2}$, and $V_{\text {image }}$ is the volume of the image of the red ball inside an empty spherical sector.

The Exercise: Determine the volume of the solid obtained by subtracting a spherical sector (AKA spherical cone) from the ball (AKA solid sphere) of radius $R=\left(4 \pi-\pi^{-1}\right)$, given the surface area of the cap of the spherical sector is $4 / \pi$.

Figure 3: Spherical Sector of Height h

Solution: The volume of the ball of radius $R=4 \pi-\pi^{-1}$ is given by

$$
\begin{align*}
V_{\text {ball }} & =\frac{4 \pi}{3} R^{3}=\frac{4 \pi}{3}\left(4 \pi-\frac{1}{\pi}\right)^{3} \tag{4}\\
& =\frac{4 \pi}{3}\left(64 \pi^{3}-48 \pi+\frac{12}{\pi}-\frac{1}{\pi^{3}}\right) \tag{5}
\end{align*}
$$

The surface area of a cap of a spherical sector of a ball of radius R and height h is given by

$$
\begin{equation*}
S_{c a p}=2 \pi R h=2 \pi\left(4 \pi-\frac{1}{\pi}\right) h \tag{6}
\end{equation*}
$$

Solve for h, given $S_{\text {cap }}=4 / \pi$.

$$
\begin{equation*}
h=\frac{4 / \pi}{2 \pi(4 \pi-1 / \pi)}=\frac{2}{\pi^{2}(4 \pi-1 / \pi)} \tag{7}
\end{equation*}
$$

The volume of a spherical sector of a ball of radius $R(=4 \pi-1 / \pi)$ and height h (given in Equation (4)) is given by the equation

$$
\begin{equation*}
V_{\text {sector }}=\frac{2 \pi}{3} R^{2} h=\frac{4 \pi}{3}\left(4 \pi-\frac{1}{\pi}\right) \frac{1}{\pi^{2}} \tag{8}
\end{equation*}
$$

We solve the problem by setting $V=V_{\text {ball }}-V_{\text {sector }}$.

$$
\begin{align*}
V & =\frac{4 \pi}{3}\left(64 \pi^{3}-48 \pi+\frac{12}{\pi}-\frac{1}{\pi^{3}}\right)-\frac{4 \pi}{3} \frac{1}{\pi^{2}}\left(4 \pi-\frac{1}{\pi}\right) \tag{9}\\
& =\frac{4 \pi}{3}\left(64 \pi^{3}-48 \pi+\frac{8}{\pi}\right) \tag{10}\\
& =\frac{4 \pi}{3}\left[4 \pi\left(4 \pi-\frac{1}{\pi}\right)\left(4 \pi-\frac{2}{\pi}\right)\right] \tag{11}\\
& \approx \frac{4 \pi}{3}[1836.15 \ldots] \tag{12}
\end{align*}
$$

Figure 4: Two Concentric Balls (Solid Spheres)

Remark: No mention was made of the agent or event that induced the system to undergo Inversion of the Spheres or collapse of the $B[O, 4 \pi]$ to $B\left[O, 4 \pi-\pi^{-1}\right]$.

19 March 2015. Harry Watson Eastvale, CA 92880
harry.watson@att.net

