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We study a noncommutative theory of gravity in the framework of torsional spacetime. This theory is based on a Lagrangian
obtained by applying the technique of dimensional reduction of noncommutative gauge theory and that the yielded diffeomorphism
invariant field theory can be made equivalent to a teleparallel formulation of gravity. Field equations are derived in the framework
of teleparallel gravity through Weitzenbock geometry. We solve these field equations by considering a mass that is distributed
spherically symmetrically in a stationary static spacetime in order to obtain a noncommutative line element.This new line element
interestingly reaffirms the coherent state theory for a noncommutative Schwarzschild black hole. For the first time, we derive the
Newtonian gravitational force equation in the commutative relativity framework, and this result could provide the possibility to
investigate examples in various topics in quantum and ordinary theories of gravity.

1. Introduction

Field equations of gravity and radial solutions have been
previously derived in noncommutative geometry [1–5]. The
generalization of quantum field theory by noncommutativity
based on coordinate coherent state formalism also cures
the short distance behavior of point-like structures [6–
13]. In this method, the particle mass 𝑀, instead of being
completely localized at a point, is dispensed throughout a
region of linear size √𝜃, substituting the position Dirac-delta
function, describing point-like structures, with a Gaussian
function, and describing smeared structures. In other words,
we assume that the energy density of a static, spherically
symmetric, particle-like gravitational source cannot be a
delta function distribution and will be given by a Gaussian
distribution of minimal width √𝜃 as follows:

𝜌𝜃 (𝑟) =
𝑀

(4𝜋𝜃)
3/2

exp(−
𝑟
2

4𝜃
) . (1)

Furthermore, noncommutative gauge theory appears in
string theory [14–18]: the boundary theory of an open string
is noncommutative when it ends on D-bran with a constant

B-field or an Abelian gauge field (particularly see [14]).
Therefore, closed string theories are expected to remain
commutative as long as the background is geometric. Recent
evidence has found a connection between nongeometry and
closed string noncommutativity and even nonassociativity
[19–21]; approaches using dual membrane theories [22] and
matrix models [23, 24] arrive at the same conclusion.

The ordinary quantumfield theory is unable to present an
exact description of exotic effects of the inherent nonlocality
of interactions, so we need a model to provide an effective
description of many of the nonlocal effects in string theory
within a simpler setting [25].

The model leads to the gauge theories of gravitation
through an ordinary class of dimensional reductions of non-
commutative electrodynamics on flat space, which then can
be made equivalent to a formulation of teleparallel gravity,
macroscopically describing general relativity. Moreover, this
model is developed by the parallel theories of gravitation,
giving a clear understanding of Einstein’s principle of absolute
parallelism. It is defined by a nontrivial vierbein field and
formed by a linear connection. For carrying nonvanishing
torsion, this connection is known as Wietzenböck geometry
on spacetime.
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This model is given appropriately by a noncommutative
Lagrangian and introduced by authors in [4, 5]. Admittedly,
this Lagrangian and the relevant explanationswill be the basis
of our next general calculations. In this paper are going to use
the Greek alphabet (𝜇, ], 𝜌, . . . = 0, 1, 2, 3) to denote indices
related to spacetime and the first half of the Latin alphabet
(𝑎, 𝑏, 𝑐, . . . = 0, 1, 2, 3) to denote indices related to the
tangent space. AMinkowski spacetime whose Lorentzmetric
is assumed to have the form of 𝜂𝑎𝑏 = diag(−1, +1, +1, +1).The
middle letters of the Latin alphabet (𝑖, 𝑗, 𝑘, . . . = 1, 2, 3)will be
reserved for space indices. The noncommutative Lagrangian
is expressed as

𝐿̇𝐺𝑟 =
𝜒0

𝑒2
det (ℎ

𝜎
󸀠

𝜎
) 𝜂
𝜇𝜇
󸀠

× [
1

4
𝜂
]]󸀠

𝜂𝜆𝜆󸀠 𝑇̇
𝜆

𝜇]𝑇̇
𝜆
󸀠

𝜇󸀠]󸀠 − 𝑇̇
]
𝜇]𝑇̇

]󸀠
𝜇󸀠]󸀠 +

1

2
𝑇̇
]󸀠
𝜇]𝑇̇

]
𝜇󸀠]󸀠] .

(2)

In the usual way, having a Lagrangian, which describes
gravitation based on noncommutative background, is like
those of gauge theories written in terms of contractions of
its field strength, here represented by torsion of Weitzenböck
connection. Its behavior under a local change of Δ 𝜇 is
the main invariance property of the particular combination
torsion tensor fields. Here 𝑒 is Yang-Mills coupling constant,
noncommutative scale determines the Planck length, and the
Planck scale of 𝑛-dimensional spacetime is given by

𝑘 = √16𝜋𝐺𝑁 = 𝑒
󵄨󵄨󵄨󵄨󵄨
𝑃𝑓𝑎𝑓𝑓 (Θ

𝐴𝐵
)
󵄨󵄨󵄨󵄨󵄨

1/2𝑛

. (3)

In mass dimension 2 the weight constant 𝜒0 is

𝜒0 =
󵄨󵄨󵄨󵄨󵄨
𝑃𝑓𝑎𝑓𝑓 (Θ

𝐴𝐵
)
󵄨󵄨󵄨󵄨󵄨

−1/𝑛

. (4)

In the commutative limit, it reduces to gravitational constant.
Therefore, Θ

𝐴𝐵 is a noncommutative parameter, defined as

Θ
𝐴𝐵

= (
𝜃
𝜇]

𝜃
𝜇𝑏

𝜃
𝜇𝑏

𝜃
𝑎𝑏) 󳨀→ 𝜃

𝜇]
= 𝜃
𝑎𝑏

= 0. (5)

By considering the calculation of superpotential and energy-
momentum current with respect to noncommutative gauge
potential, given by 𝐵

𝜇

𝑎
= | det(𝜃𝜇

󸀠
𝑎
󸀠

)|

1/2𝑛

𝜃
]𝜇

𝜔𝑎], the version of
non-commutative gravitational field equations is produced.
𝜔𝑎] are gauge fields corresponding to the gauging of the
translation group, that is, replacing 𝑅

𝑛 by the Lie algebra
𝑔 of local gauge transformations with gauge functions and
its relation with the non-trivial tetrad field is expressed as
ℎ
𝜇

𝑎
= 𝛿
𝜇

𝑎
− 𝑒𝜃

]𝜇
𝜔𝑎] and 𝛿

𝜇

𝑎
has the perturbative effect in the

trivial holonomic tetrad fields of flat space.
It is important to note that by applying the “dimensional

reduction of gauge theories,” noncommutative electrody-
namics gauge field, shown by the noncommutative Yang-
Miles theory, reduces to the gauge theories of gravitation,
which naturally yields Weitzenböck geometry on the space-
time.Also, the induced diffeomorphism invariant field theory
can bemade equivalent to a teleparallel formulation of gravity
macroscopically describing general relativity. In Section 2

we show that our Lagrangian can be made equivalent with
general relativity. In Section 3 we are going to derive the
field equations by utilizing various definitions of teleparal-
lel gravity. By simplifying and solving the field equations,
we obtain the line element in the spherically symmetric
spacetime in Section 4. We continue our discussion with
investigations about the limiting cases of our line element and
horizons of noncommutative Schwarzschild black hole in this
method. Finally we show how the Newtonian gravitational
force equation can be derived from our line element in the
commutative limit in Section 5.

2. Equivalence with General Relativity

In order to continue our discussion to achieve to noncom-
mutative field equations, we should show how our model can
be coupled with general relativity. With respect to the given
relation of

Γ̇
𝜌

𝜇] = Γ
𝜌

𝜇] + 𝐾̇
𝜌

𝜇], (6)

for the vanishing curvature of the Weitzenböck connection,
we have

𝑅̇
𝜌

𝜃𝜇] = 𝑅
𝜌

𝜃𝜇] + 𝑄̇
𝜌

𝜃𝜇] ≡ 0, (7)

where

𝑅
𝜌

𝜃𝜇] = 𝜕𝜇Γ
𝜌

𝜃] − 𝜕]Γ
𝜌

𝜃] + Γ
𝜌

𝜎𝜇
Γ
𝜎

𝜃] − Γ
𝜌

𝜎]Γ
𝜎

𝜃𝜇 (8)

is the curvature of the Levi-Civita connection. The above
equations show that, whereas in general relativity torsion
vanishes, in teleparallel gravity it is curvature that vanishes.
We rewrite (7) based on their components in order to find
the scaler of 𝑅̇

𝜌

𝜃𝜇]; therefore, we have

𝑄̇
𝜌

𝜃𝜇] = (𝜕𝜇𝐾̇
𝜌

𝜃] − 𝜕]𝐾̇
𝜌

𝜃𝜇
+ 𝑇̇
𝜌

𝜎𝜇
𝐾̇
𝜎

𝜃] − Γ̇
𝜌

𝜎]𝐾̇
𝜎

𝜃𝜇

− Γ̇
𝜎

𝜃𝜇
𝐾̇
𝜌

𝜎] + Γ̇
𝜎

𝜃]𝐾̇
𝜌

𝜎𝜇
) + 𝐾̇

𝜌

𝜎]𝐾̇
𝜎

𝜃𝜇
− 𝐾̇
𝜌

𝜎𝜇
𝐾̇
𝜎

𝜃],

(9)

that is, the tensor written in terms of the Weitzenböck
connection only. Like the Riemanian curvature tensor, it is 2-
form assuming values in the Lie algebra of the Lorentz group
(see [26, 27]). By taking appropriate contractions it is easy to
show that

𝑄̇
𝜌

𝜃𝜇] = (𝐷̇𝜇𝑘̇
𝜌

𝜃] − 𝐷̇]𝑘̇
𝜌

𝜃𝜇
) + 𝐾̇

𝜌

𝜎]𝐾̇
𝜎

𝜃𝜇
− 𝐾̇
𝜌

𝜎𝜇
𝐾̇
𝜎

𝜃]. (10)

By considering (20) and the following term:

−𝑅 = 𝑄̇ ≡
1

2
Λ
𝜃

𝜌
𝑄̇
𝜌

𝜃𝜇]𝑑𝑥
𝜇

∧ 𝑑𝑥
]
, (11)

we achieve to the scalar version of (7),

𝑅 ≡ (𝐾̇
𝜇]𝜌

𝐾̇𝜌]𝜇 − 𝐾̇
]
𝜇𝜌

𝐾̇
𝜇𝜌

] ) +
2

ℎ
𝜕𝜇 (ℎ𝑇̇

]𝜇
] ) . (12)

The Lagrangian of (2) can be written in a simple form of

𝐿̇ =
𝜒0

𝑒2
det (ℎ

𝜎
󸀠

𝜎
) (𝐾̇
𝜇]𝜌

𝐾̇𝜌]𝜇 − 𝐾̇
]
𝜇𝜌

𝐾̇
𝜇𝜌

] ) , (13)
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with a combination of (12) and (13), where 𝐿̇ takes the
following form:

𝐿̇ =
𝜒0

𝑒2
det (ℎ

𝜎
󸀠

𝜎
) (𝑅 −

2

ℎ
(𝜕𝜇 (ℎ𝑇̇

]𝜇
] ))) . (14)

By considering (3) and (4), 𝐿̇ exchanges to

𝐿̇ = 𝐿 − 𝜕𝜇 (
ℎ

8𝜋𝐺
𝑇̇
]𝜇
] ) , (15)

up to a divergence at the commutative limit; therefore, the
Lagrangian of (2) 𝐿̇ is equivalent to the Lagrangian of general
relativity

𝐿̇ =
−1

16𝜋𝐺
√−𝑔𝑅 (16)

is the Einstein-Hilbert Lagrangian of general relativity. How-
ever, this result could be extended with many further terms,
but this is enough to derive a valid field equations.

3. Noncommutative Field Equations

In this section, we are going to present a reformulation of
teleparallel gravity (which is made equivalent to general rela-
tivity). Due to the introduced noncommutative Lagrangian
(2), we are able to derive the field equations similarly to
the teleparallel method. Weitzenböck geometric definitions
and some well-known concepts of general relativity [28–30]
and teleparallel gravity are required (more explanations about
these equations can be found in [29, 31, 32]). In 4-dimension,
the noncommutative action integral is given by

𝑆 = ∫ 𝐿̇𝐺𝑟𝑑
4
𝑥. (17)

Under an arbitrary variation 𝛿ℎ
𝜇

𝑎
of the tetrad field, the action

variation is written in the following form:

𝛿𝑆 = ∫ Ξ
𝑎

𝜇
𝛿ℎ
𝜇

𝑎
ℎ𝑑
4
𝑥, (18)

where

ℎΞ
𝑎

𝜇
=

𝛿𝐿̇𝐺𝑟

𝛿𝐵
𝜇

𝑎

≡
𝛿𝐿̇𝐺𝑟

𝛿ℎ
𝜇

𝑎

=
𝜕𝐿̇𝐺𝑟

𝜕ℎ
𝜇

𝑎

− 𝜕𝜆

𝜕𝐿̇𝐺𝑟

𝜕𝜆𝜕ℎ
𝜇

𝑎

(19)

is the matter energy-momentum tensor. (More definitions
about this tensor can be found in [33].) Now, consider first
an infinitesimal Lorentz transformation as

Λ
𝑏

𝑎
= 𝛿
𝑏

𝑎
+ 𝜀
𝑏

𝑎
, (20)

where 𝜀
𝑏

𝑎
= −𝜀
𝑏

𝑎
. Because of such transformation, the tetrad

should be changed as

𝛿ℎ
𝜇

𝑎
= 𝜀
𝑏

𝑎
ℎ
𝜇

𝑏
. (21)

The requirement of invariance of the action under local
Lorentz transformation therefore yields

∫ Ξ
𝑏

𝑎
𝜀
𝑏

𝑎
ℎ𝑑
4
𝑥 = 0. (22)

Since 𝜀
𝑏

𝑎
is antisymmetric, symmetric of energy-momentum

tensor yields some specific results that can be seen in [28].
Consider spacetime coordinates that are transformed as
follows:

𝑥
󸀠𝜌

= 𝑥
𝜌

+ 𝜁
𝜌
. (23)

Whereby, we retrieve the tetrad in the form of

𝛿ℎ
𝜇

𝑎
≡ ℎ
󸀠𝜇

𝑎
(𝑥) − ℎ

𝜇

𝑎
(𝑥) = ℎ

𝜌

𝑎
𝜕𝜌𝜁
𝜇

− 𝜁
𝜌
𝜕𝜌ℎ
𝜇

𝑎
. (24)

Substituting in (18), we have

𝛿𝑆 = ∫ Ξ
𝑎

𝜇
[ℎ
𝑎

𝜌
𝜕𝜇𝜁
𝜌

− 𝜁
𝜌
𝜕𝜌ℎ
𝜇

𝑎
] ℎ𝑑
4
𝑥, (25)

or equivalently

𝛿𝑆 = ∫ [Ξ
𝜌

𝑐
𝜕𝜌𝜁
𝑐

+ 𝜁
𝑐
Ξ
𝜌

𝜇
𝜕𝜌ℎ
𝜇

𝑐
− 𝜁
𝜌
𝜕𝜌ℎ
𝜇

𝑎
] ℎ𝑑
4
𝑥. (26)

Substitute the identity

𝜕𝜌ℎ
𝜇

𝑎
= 𝐴̇
𝑏

𝑎𝜌
ℎ
𝜇

𝑏
− Γ̇
𝜇

𝜆𝜌
ℎ
𝜆

𝑎
, (27)

where 𝐴̇ is the spin connection in teleparallel gravity. The
important property of teleparallel gravity is that its spin
connection is related only to the inertial properties of the
frame, not to gravitation. In fact, it is possible to choose an
appropriate frame in which it vanishes everywhere.We know
that the above formula vanishes by (41) (see also [34, 35]),
and making use of the symmetric of the energy-momentum
tensor, the action variation assumes the form of

𝛿𝑆 = ∫ Ξ
𝜌

𝑐
[𝜕𝜌𝜁
𝑐

+ (𝐴̇
𝑐

𝑏𝜌
− 𝐾̇
𝑐

𝑏𝜌
) 𝜁
𝑏
] ℎ𝑑
4
𝑥. (28)

Integrating the first term by parts and neglecting the surface
term, the invariance of the action yields

∫ [𝜕𝜇 (ℎΞ
𝜇

𝑎
) − (𝐴̇

𝑏

𝑎𝜇
− 𝐾̇
𝑏

𝑎𝜇
) (ℎΞ
𝜇

𝑏
)] 𝜁
𝑎
ℎ𝑑
4
𝑥 = 0. (29)

From arbitrariness of 𝜁
𝑐, under the covariant derivative 𝐷̈𝜇, it

follows that

𝐷̈𝜇ℎΞ
𝜇

𝑎
≡ 𝜕𝜇 (ℎΞ

𝜇

𝑎
) − (𝐴̇

𝑏

𝑎𝜇
− 𝐾̇
𝑏

𝑎𝜇
) (ℎΞ
𝜇

𝑏
) = 0. (30)

By identity of

𝜕𝜌ℎ = ℎΓ̇
]
]𝜌 ≡ ℎ (Γ̇

]
𝜌] − 𝐾̇

]
𝜌]) , (31)

the above conservation law becomes

𝜕𝜇Ξ
𝜇

𝑎
+ (Γ̇
𝜇

𝜌𝜇
− 𝐾̇
𝜇

𝜌𝜇
) Ξ
𝜌

𝑎
− (𝐴̇
𝑏

𝑎𝜇
− 𝐾̇
𝑏

𝑎𝜇
) Ξ
𝜇

𝑏
= 0. (32)

In a purely spacetime form, it reads

𝐷̈𝜇Ξ
𝜇

𝜆
≡ 𝜕𝜇Ξ

𝜇

𝜆
+ (Γ̇
𝜇

𝜇𝜌
− 𝐾̇
𝜇

𝜌𝜇
) Ξ
𝜌

𝜆
− (Γ̇
𝜌

𝜆𝜇
− 𝐾̇
𝜌

𝜆𝜇
) Ξ
𝜇

𝜌
= 0. (33)
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This is the conservation law of the source of energy-
momentum tensor. Variation with respect to the noncom-
mutative gauge potential 𝐵

𝜇

𝑎
yields the noncommutative

teleparallel version of the gravitational field equations

𝜕𝜎 (ℎ ̇𝑆
𝜇𝜎

𝑎
) − 𝑘ℎ ̇𝐽

𝜇

𝑎
= 𝑘ℎΞ

𝜇

𝑎
, (34)

where

ℎ ̇𝑆
𝜇𝜎

𝑎
= ℎℎ
𝜆

𝑎
̇𝑆
𝜇𝜎

𝜆
≡ −𝑘

𝜕𝐿̇

𝜕 (𝜕𝜎ℎ
𝑎
𝜇

)

, (35)

which defines the superpotential. For the gauge current we
have

ℎ ̇𝐽
𝜇

𝑎
= −

𝜕𝐿̇

𝜕𝐵𝑎
𝜇

≡ −
𝜕𝐿̇

𝜕ℎ𝑎
𝜇

. (36)

Note that the matter energy-momentum tensor which is
defined in this relation appears as the source of torsion;
similarly, the energy-momentum tensor appears as the source
of curvature in general relativity. Our computation has led us
to the following results:

̇𝑆
𝜇𝜎

𝑎
= 2𝑇̇
𝜇𝜎

𝑎
− 𝑇̇
𝜎𝜇

𝑎
− ℎ
𝜎

𝑎
𝑇̇
𝜂𝜇

𝜂
+ ℎ
𝜇

𝑎
𝑇̇
𝜂𝜎

𝜂
,

̇𝐽
𝜇

𝑎
=

1

𝑘
ℎ
𝜆

𝑎
̇𝑆
]𝜇
𝑐

𝑇̇
𝑐

]𝜆 −
ℎ
𝜇

𝑎

ℎ
𝐿̇ +

1

𝑘
𝐴̇
𝑐

𝑎𝜎
̇𝑆
𝜇𝜎

𝑐
,

(37)

for noncommutative superpotential and gauge current. The
lagrangian 𝐿̇ appears again in our equations, but notice that
this term cross its coefficient yields a term purely based on
its field strength according to (2). This simplified expression
maintains equivalence to general relativity. We can observe
that the gravitational field equations depend on the torsion
only. Finally the field equations can be written as

𝜕𝜎 (ℎ (2𝑇̇
𝜇𝜎

𝑎
− 𝑇̇
𝜎𝜇

𝑎
− ℎ
𝜎

𝑎
𝑇̇
𝜂𝜇

𝜂
+ ℎ
𝜇

𝑎
𝑇̇
𝜂𝜎

𝜂
))

− 𝑘ℎ (
1

𝑘
ℎ
𝜆

𝑎
̇𝑆
]𝜇
𝑐

𝑇̇
𝑐

]𝜆 −
ℎ
𝜇

𝑎

ℎ
𝐿̇ +

1

𝑘
𝐴̇
𝑐

𝑎𝜎
̇𝑆
𝜇𝜎

𝑐
) = 𝑘ℎΞ

𝜇

𝑎
,

(38)

where 𝑘 = 𝜒0/𝑒
2 is a constant. These field equations are

similar to teleparallel field equations, although it would
be distinguished with different field strength 𝑇̇

𝜇𝜎

𝑎
which is

given by the covariant rotational of noncommutative gauge
potential of 𝐵

𝜇

𝑎
. Consider the following equations from the

teleparallel theory (see, for instance, [32, 34–36]):

𝑇̇
𝑎

𝜇] = 𝜕]ℎ
𝑎

𝜇
− 𝜕𝜇ℎ
𝑎

] + 𝐴̇
𝑎

𝑒]ℎ
𝑒

𝜇
− 𝐴̇
𝑎

𝑒𝜇
ℎ
𝑒

], (39)

Γ̇
𝜌

]𝜇 = ℎ
𝜌

𝑎
𝜕𝜇ℎ
𝑎

] + ℎ
𝜌

𝑎
𝐴̇
𝑎

𝑏𝜇
ℎ
𝑏

] , (40)

𝜕𝜇ℎ
𝑎

] − Γ̇
𝜌

]𝜇ℎ
𝑎

𝜌
+ 𝐴̇
𝑎

𝑏𝜇
ℎ
𝑏

] = 0, (41)

𝑇̇
𝜌

]𝜇 = Γ̇
𝜌

𝜇] − Γ̇
𝜌

]𝜇. (42)

The field equations take the exact following form:

𝜕

𝜕𝑥𝜎
(Γ̇
𝜎

𝑎𝜇
− Γ̇
𝜎

𝜇𝑎
) −

𝜕

𝜕𝑥𝜇
Γ̇
𝜆

𝑎𝜆
+

𝜕

𝜕𝑥𝜆
Γ̇
𝜆

𝑎𝜇

− Γ̇
𝜂

𝑎𝜆
Γ̇
𝜆

𝜇𝜂
+ Γ̇
𝜂

𝑎𝜇
Γ̇
𝜆

𝜆𝜂
=

𝜒0

𝑒2
𝜌 (𝑟)

𝜕

𝜕𝑥𝑎

𝜕

𝜕𝑥𝜇
,

(43)

which, unlike the left hand side of (38), is written purely
based on noncommutative field strength, and the above
field equation is written in terms of Weitzenböck connec-
tion only. Regarding the equivalency between corresponding
Lagrangians and the above simplified field equations and
applying (34), we have therefore

𝑅𝑎𝜇 −
1

2
ℎ𝑎𝜇𝑅 = 𝑘Ξ𝑎𝜇 (44)

as equivalent to Einstein’s field equations. Note that (44) is
not Einstein’s field equations but the teleparallel field equa-
tions made equivalent to general relativity. And equivalent
model of teleparallel field equations with general relativity is
expressed in the references in detail (see, for instance, [32, 34,
35]). We continue our discussion to derive noncommutative
line element by solving these field equations.

4. Noncommutative Line Element

Teleparallel versions of the stationary, static, spherically, axis-
symmetric, and symmetric of the Schwarzschild solution
have been previously obtained [37, 38]. Within a framework
inspired by noncommutative geometry, we solve the field
equations for a distribution of spherically symmetricallymass
in a stationary static spacetime, like the exterior solution of
Schwarzschild (see also [29]).Then it is natural to assume that
the line element is as follows:

𝑑𝑠
2

= −𝑓 (𝑟) 𝑑𝑡
2

+ 𝑔 (𝑟) 𝑑𝑟
2

+ ℎ (𝑟) 𝑟
2

(𝑑𝜃
2

+ sin2𝜃𝑑𝜙
2
) .

(45)

With a new radial coordinate defined as 𝑟 = 𝑟√ℎ(𝑟), the line
element becomes

𝑑𝑠
2

= −𝐴 (𝑟) 𝑑𝑡
2

+ 𝐵 (𝑟) 𝑑𝑟
2

+ 𝑟
2

(𝑑𝜃
2

+ sin2𝜃𝑑𝜙
2
) . (46)

Usually one replaces the functions 𝐴(𝑟) and 𝐵(𝑟) with expo-
nential functions to obtain somewhat simpler expressions
for the noncommutative tensor components. Hence, we
introduce the functions 𝛼(𝑟) and 𝛽(𝑟) by 𝑒

2𝛼(𝑟)
= 𝐴(𝑟) and

𝑒
𝛽(𝑟)

= 𝐵(𝑟) to get

𝑑𝑠
2

= −𝑒
2𝛼

𝑑𝑡
2

+ 𝑒
2𝛽

𝑑𝑟
2

+ 𝑟
2

(𝑑𝜃
2

+ sin2𝜃𝑑𝜙
2
) . (47)

Tetrad components of the above metric take the following
form:

ℎ
𝑎

𝜇
=

[
[
[

[

−𝑒
2𝛼

0 0 0

0 𝑒
2𝛽 sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 cos 𝜃 sin𝜙

0 𝑒
2𝛽 sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

0 𝑒
2𝛽 cos 𝜃 −𝑟 sin 𝜃 0

]
]
]

]

.

(48)

Weitzenböck connection Γ̇
𝜌

𝜇] has the following expression:

Γ̇
𝜌

𝜇] = ℎ
𝜌

𝑎
𝜕]ℎ
𝑎

𝜇
. (49)
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Now, we can calculate the nonvanishing components of
Weitzenböck connection as follows:

Γ
0

01
= −2𝛼

󸀠
, Γ

1

11
= 2𝛽
󸀠
, Γ

1

22
= −𝑟𝑒

−𝛽
,

Γ
1

33
= −𝑟𝑒

−𝛽sin2𝜃, Γ
2

12
=

𝑒
𝛼

𝑟
= Γ
3

13
,

Γ
2

21
=

1

𝑟
= Γ
3

31
, Γ

2

33
= − sin 𝜃 cos 𝜃,

Γ
3

23
= Γ
3

32
= cot 𝜃.

(50)

By replacing these components in (43), the noncommutative
tensors of (51)–(53) for the left-hand side of the field equations
will produce the following expression:

𝑁𝑡̂𝑡̂ =
1

𝑟2
(−4𝑒
−2𝛽

+ 1 − 𝜓𝜃) −
2

𝑟
𝛽
󸀠
𝑒
−2𝛽

=
𝜒0

𝑒2
𝜌 (𝑟) 𝛿𝑡̂𝑡̂, (51)

𝑁𝑟𝑟 =
1

𝑟2
(2𝑒
−2𝛽

+ 1 − 𝜓𝜃) +
2

𝑟
𝛼
󸀠
𝑒
−2𝛽

=
𝜒0

𝑒2
𝜌 (𝑟) 𝛿𝑟𝑟, (52)

𝑁
𝜃𝜃

= 𝑁
𝜙𝜙

=
1

𝑟
𝑒
−2𝛽

(𝑟𝛼
󸀠󸀠

+ 𝑟𝛼
󸀠2

− 𝑟𝛼
󸀠
𝛽
󸀠
+ 𝛼
󸀠
− 𝛽
󸀠
− 1)

+ 𝛼
󸀠2

𝑒
−2𝛽

=
𝜒0

𝑒2
𝜌 (𝑟) 𝛿

𝜃𝜃
=

𝜒0

𝑒2
𝜌 (𝑟) 𝛿

𝜙𝜙
.

(53)

Adding (51) and (52) we get simply

1

𝑟2
(𝜓𝜃 − 𝑒

−2𝛽
+ 𝑒
−2𝛽

(𝛼
󸀠
− 𝛽
󸀠
) + 1) =

𝜒0

𝑒2
𝜌 (𝑟) , (54)

where 𝛼(𝑟) ̸= 𝛽(𝑟). It should also be noted that, by recalling
(47), we can consider the limiting case for our solution
assuming (𝛼

󸀠
− 𝛽
󸀠
) = 𝑘, where 𝑘 is a constant, and by

considering the time coordinate, we can shift this constant
to an arbitrary value. It is possible, therefore, without loss of
generality to choose 𝑘 = 0. It does not contradict (47) to
set 𝛼
󸀠

= 𝛽
󸀠. According to this analysis, the equation 𝑁𝑡̂𝑡̂ =

(𝜒0/𝑒
2
)𝜌(𝑟)𝛿𝑡̂𝑡̂ can be written as

−1

𝑟

𝑑

𝑑𝑟
[𝑟 (𝑒
−2𝛽

− 𝜓𝜃 − 1)] =
𝜒0

𝑒2
𝜌 (𝑟) . (55)

For a perfect fluid in thermodynamic equilibrium, the stress-
energy tensor takes on a particularly simple form

Ξ
𝜇]

= (𝜌 + 𝑃) 𝑢
𝜇
𝑢
]

+ 𝑝𝑔
𝜇]

, (56)

where the pressure 𝑃 can be neglected due to the distribution
of mass and the gravitational effects; consequently, only one
term will remain in the above formula as follows:

Ξ
𝑎𝜇

= 𝜌 (𝑟)
𝑑𝑥
𝑎

𝑑𝑡

𝑑𝑥
𝜇

𝑑𝑡
, (57)

or

Ξ
𝑎𝜇

= 𝜌 (𝑟) 𝛿
𝑎𝜇

. (58)

Therefore, for spherically symmetric distribution ofmass that
depends on r-coordinate, we can write

𝑚 (𝑟) = ∫

𝑟

0

4𝜋𝑟
2
𝜌 (𝑟) 𝑑𝑟. (59)

Note that the 𝜌(𝑟) is defined by (1). Indeed, we introduce
the same energy density indicated in the noncommutative
perturbation theory [39]

𝑚 (𝑟) = 𝑀𝜃 (𝑟) =
2𝑀

√𝜋
𝛾 (

3

2
,

𝑟
2

4𝜃
) . (60)

Equation (55) can be integrated to find

𝑒
−2𝛽

= 1 −
𝜒0

4𝜋𝑒2

𝑚 (𝑟)

𝑟
+ 𝜓𝜃, (61)

where 𝜓𝜃 is a function that carries the tetrad field factor and
will be defined later by (66) and (67). Now by considering

𝑒
−2𝛽

= −
1

ℎ11

= ℎ00, (62)

the noncommutative line element for a spherically symmetric
matter distribution is therefore

𝑑𝑠
2

= − (1 −
𝜒0

4𝜋𝑒2

𝑚 (𝑟)

𝑟
+ 𝜓𝜃) 𝑑𝑡

2

+ (1 −
𝜒0

4𝜋𝑒2

𝑚 (𝑟)

𝑟
+ 𝜓𝜃)

−1

𝑑𝑟
2

+ 𝑟
2

(𝑑𝜃
2

+ sin2𝜃𝑑𝜙
2
) .

(63)

The constant field of 𝜒0/𝑒
2 in terms of (3), (4), and (5) can be

retrieved as

𝜒0

𝑒2
=

󵄨󵄨󵄨󵄨󵄨
𝜃
𝜇𝑏󵄨󵄨󵄨󵄨󵄨

16𝜋𝐺𝑁

, (64)

where 𝐺𝑁 is the Newtonian constant and |𝜃
𝜇𝑏

| is determined
by 𝜃
𝜇𝑏

= 𝜃
21

= −𝜃
12

≡ 𝜃. Where, 𝜃 is a real, antisymmetric
and constant tensor, therefore, the above equation can be
simplified to yield:

𝜒0

𝑒2
=

𝜃

16𝜋𝐺𝑁

. (65)

New line element (63) in particular depends on 𝜓𝜃, and
naturally 𝜓𝜃 has its origin on the quantum fluctuations of
the noncommutative background geometry and originally
comes from the field equations. The presented solution for
our field equations produces naturally some additional terms
in comparison with the solution of noncommutative version
of general relativity (naturally, because it has some additional
terms in its components). These terms appear in the new line
element because 𝜓𝜃 relates to the noncommutative torsional
spacetime and algebraic properties in spherically symmetric
solution of the tetrad fields. We have therefore 𝜓𝜃 in the
following simplified equation:

𝜓𝜃 = 𝜀
𝑟𝜃𝜙

𝜀
𝑟𝜃𝜙

ℎ
𝑟

𝑟
𝑒
−𝛽

. (66)

Definition 𝜀
𝑟𝜃𝜙

𝜀
𝑟𝜃𝜙

= −6/ℎ
2 is applied here (see also

[40, 41]). According to this definition and (48) and (50).
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Through simplification, we find the following form of 𝜓𝜃 we
find the following form of 𝜓𝜃:

𝜓𝜃 ≅ ∑

𝑘=2𝑛

∑

𝑛=1

(
𝜒0

4𝜋𝑒2

𝑚 (𝑟)

𝑟
)

𝑘

− ∑

𝑘=2𝑛+1

∑

𝑛=1

(
𝜒0

4𝜋𝑒2

𝑚 (𝑟)

𝑟
)

𝑘

.

(67)

Note that 𝜓𝜃 is considered with the lower bound of ∑. If
we want to consider at least the second order of 𝜃 (which is
proposed by [13]) for 𝜓𝜃, then it is natural to assume 𝑛 = 1.
Therefore, two states for our line element will be produced:
the imperfect state and the perfect state. Let us now consider
the perfect state.There is a proof for this state in terms of some
theorems in mathematics that allows us to introduce our line
element as an appropriate description for a noncommutative
spacetime. Combination of these theoremswith regard to our
results is given by [42–47].

Theorem 1. Let 𝐿 be a perfect field. Recall that a polynomial
𝑓(𝑥) ∈ 𝐿[𝑥] is called additive if 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)

identically. It is easy to see that a polynomial is additive if and
only if it is of the form

𝑓 (𝑥) = 1 − 𝑎0𝑥 + 𝑎
2

1
𝑥
2

− ⋅ ⋅ ⋅ ± 𝑎
𝑛

𝑛
𝑥
𝑛

= ∑

𝑛=0

𝑎
2𝑛

𝑛
𝑥
2𝑛

− ∑

𝑛=0

𝑎
2𝑛+1

𝑛
𝑥
2𝑛+1

.
(68)

The set of additive polynomials forms a noncommutative field
in which (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)). This field is generated by
scalar multiplications 𝑥 󳨃→ 𝑎𝑥 for 𝑎 ∈ 𝐿 and 𝑥𝑖 ∈ 𝑓(𝑥) does
not commute with the 𝑥𝑗𝜖𝑓(𝑥). Note that 𝑎 can be a constant
field and it has given as ≈ 𝜒0/4𝜋𝑒

2 here (see [42–47] and the
references cited therein). It is clear that components of𝑓(𝑥) can
be exactly replaced with components of ℎ00.

Regarding other investigations into descriptions of non-
commutative spacetime, we should expand our discussion
into a comparisonmethodwith other line elements presented
for noncommutative spacetime. Reference [13] suggests the
following line element for noncommutative Schwarzschild
spacetime:

𝑑𝑠
2

= − (1 −
4𝑀

𝑟√𝜋
𝛾 (

3

2
,

𝑟
2

4𝜃
)) 𝑑𝑡

2

+ (1 −
4𝑀

𝑟√𝜋
𝛾 (

3

2
,

𝑟
2

4𝜃
))

−1

𝑑𝑟
2

+ 𝑟
2
𝑑Ω
2
,

(69)

where 𝑑Ω
2

= 𝑑𝜃
2

+ sin2𝜃𝑑𝜙
2 and 𝛾(3/2, 𝑟

2
/4𝜃) is the lower

incomplete gamma function

𝛾 (
3

2
,

𝑟
2

4𝜃
) ≡ ∫

𝑟
2
/4𝜃

0

𝑑𝑡√𝑡𝑒
−𝑡

. (70)

We note that nonvanishing radial pressure is a consequence
of the quantum fluctuation of the spacetimemanifold leading
to an inward gravitational pull and preventing the matter
collapsing into a point. According to the line element (63),

in a neighborhood of the origin at 𝑟 ≤ 𝜃, the energy density
distribution of a static symmetric and noncommutative fuzzy
spacetime is described by (1), which replaces the Dirac 𝛿

distribution by a smeared Gaussian profile. Meanwhile, in
the imperfect state, our line element can be made equivalent
to the line element of (69), and it is expected to happen
when 𝜓𝜃 vanishes. Assuredly it is due to vanishing of
the tetrad components ℎ

𝑎

𝜇
in (48) or even Wietzenböck

connections in (50). It means that, in absence of torsional
spacetime, the coordinate coherent state will be produced in
the noncommutative field theory. It is completely reasonable
since coherent state theory is derived in the noncommutative
framework of the general relativity, and the torsion is not
defined in the general relativity. This equivalency is shown
with the following relation:

1 −
𝑀

2𝑟√𝜋
𝛾 (

3

2
,

𝑟
2

4𝜃
) ≅ 𝑔

coherent state
00

= 1 −
4𝑀

𝑟√𝜋
𝛾 (

3

2
,

𝑟
2

4𝜃
) .

(71)

According to this proof, the solution of the presented non-
commutative field equations in the imperfect state of itself
results in the exact solution of noncommutative general
relativity field equations through coordinate coherent state of
our line element.

4.1. Schwarzschild Black Hole, Horizons. In this paper we
have not extended our discussion into black holes, but
our introduced equations can be the basis of a subject on
noncommutative black holes. Indeed the calculation of event
horizons of a noncommutative Schwarzschild black hole
would be done by the horizon equation −ℎ𝑟

𝐻

= ℎ
11

(𝑟𝐻) = 0.
Answers to this equation are illustrated in Figures 1 and 2.
Figure 1 shows the behavior of ℎ00 versus the horizon radii
when 𝜓𝜃 vanishes. It is clear that 𝜓𝜃 vanishing approximately
results in 𝑔00 of (69); Figure 2 shows the behavior of ℎ00 at
the same conditions when we have 𝜓𝜃. As we can see from
these figures, there is a different behavior in the perfect state
in comparison with the imperfect state near the horizon radii
which is due to the nature of torsional spacetime. However,
the same behaviors have been indicated in the origin and the
higher bound of 𝑟.

5. Force Equation in Commutative Limit

In teleparallel gravity, the Newtonian force equation is
obtained by assuming the class of frames in which the
teleparallel spin connection 𝐴̇ vanishes, and the gravitational
field is stationary and weak [40, 41, 48, 49]. In our model,
the Newtonian gravitational force equation directly derives
from torsion components by 𝜓𝜃 in its commutative limit.
When we write the expansion of new line element in the
noncommutative limit, we have

ℎ00 = 1 −
𝜒0

4𝑒2

𝑚 (𝑟)

𝑟
+ (

𝜒0

4𝑒2

𝑚 (𝑟)

𝑟
)

2

− (
𝜒0

4𝑒2

𝑚 (𝑟)

𝑟
)

3

(72)
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Figure 1: The imperfect state in a noncommutative spherically
symmetric geometry. The function of ℎ00 versus 𝑟√𝜃, for various
values of 𝑀√𝜃. The upper curve corresponds to 𝑀 = 1.00√𝜃

(without horizon), the middle curve corresponds to 𝑀 = 𝑀
0

≈

1.90√𝜃 (with one horizon at 𝑟𝐻 = 𝑟0 ≈ 4.9√𝜃), and finally the
lowest curve corresponds to 𝑀 = 3.02√𝜃 (two horizons at 𝑟𝐻 =

𝑟− ≈ 2.70√𝜃 and 𝑟𝐻 = 𝑟+ ≈ 7.20√𝜃).
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Figure 2: The perfect state in a noncommutative spherically sym-
metric geometry. The function of ℎ

00
versus 𝑟√𝜃, for various values

of 𝑀√𝜃. The upper curve corresponds to 𝑀 = 1.00√𝜃 (without
horizon), the middle one corresponds to 𝑀 = 𝑀0 ≈ 1.90√𝜃 (with
one horizon at 𝑟𝐻 = 𝑟0 ≈ 4.9√𝜃), and finally the lowest curve
corresponds to 𝑀 = 3.02√𝜃 (two horizons at 𝑟𝐻 = 𝑟− ≈ 3.90√𝜃

and 𝑟𝐻 = 𝑟+ ≈ 5.80√𝜃).

or equivalently

ℎ00 = 1 − 𝐴
𝑚 (𝑟)

𝑟
+ 𝐵

𝑚 (𝑟)
2

𝑟2
− 𝐶

𝑚 (𝑟)
3

𝑟3
. (73)

Due to noncommutative effects, 𝑟 in the denominator van-
ishes, but in the limit case, when it goes to the commutative
limit, it is modified to the commutative 𝑔00 of Schwarzschild
solution in addition to a force equation much similar to
the Newtonian gravitational force equation. Note that the
induced gravitational constant of (3) vanishes in the com-
mutative limit and agrees with that found in [50] using
the supergravity dual of noncommutative Yang-Mills theory
in four dimensions. Newton was the first to consider in

his Principia an extended expression of his law of gravity
including an inverse-cube term of the form

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
+ 𝐵

𝑚1𝑚2

𝑟3
, 𝐵 is a constant. (74)

He attempts to explain Moon’s apsidal motion by the above
relation. In the commutative limit our metric can be defined
in the form of

ℎ
commutative
00

≅ 1 −
2𝑀

𝑟
+

4𝑀
2

𝑟2
−

8𝑀
3

𝑟3
, (75)

where 𝑚(𝑟) is given by (60), and in the commutative limit it
has the form of

lim
𝜃→0

𝑚 (𝑟) = 2𝑀. (76)

By considering the following terms in (74):

(i) relativistic limits 𝐺 = 1,

(ii) set the 𝑚1 = 𝑚2 = 2𝑀, 𝐵 = −2𝑀,

for our line element we can set

ℎ
commutative
00

= (𝑔
commutative Schwarszchild solution
00

+ 𝐹 (𝑟)
Newton

) .

(77)

As we can see from (63) and (67) (expansion of new
line element), the ℎ00 has two parts: torsional and nontor-
sional parts; the above relation states that, in the limit of
commutativity, torsional parts reduce to force equation of
𝐹(𝑟) and nontorsional part yields the 𝑔00 of commutative
Schwarzschild solution.

Einstein’s theory of general relativity attributes gravita-
tion to curved spacetime instead of being due to a force
propagated between bodies. Energy and momentum distort
spacetime in their vicinity, and other particles move in trajec-
tories determined by the geometry of spacetime. Therefore,
descriptions of the motions of light and mass are consistent
with all available observations. Meanwhile, according to the
general relativity’s definition, the gravitational force is a
fictitious force due to the curvature of spacetime because
the gravitational acceleration of a body in free fall is due to
its world line being a geodesic of spacetime [51]. However,
through a weak equivalence principle that is assumed initially
in teleparallel gravity [52–54], our results are reasonable and
we can conclude that the presented solution in its commutative
limit attributes the gravitation to a force propagated between
bodies and the curved spacetime, or sum of torsion and
curvature. This result is similar to Einstein-Cartan theory of
gravity [55].

Moreover, the different behaviour of Schwarzschild black
hole horizon, which is absent in the previous method, is due
to force of heavy pulling from the black hole in terms of this
introduced force. As can be seen in Figure 2, the intensity of
this force has a direct relation withmass𝑀, so the heavier the
black hole is, the stronger force it has near its horizon.
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6. Conclusion

In this letter, we have utilized a noncommutative Lagrangian
which gives us possibilities to use teleparallel gravity to
derive field equations. Solution of these field equations in
the spherically symmetric geometry yields a new noncom-
mutative line element. In the limit cases when the torsion
vanishes, we have obtained an interesting result: in absence
of torsional spacetime the version of coordinate coherent state
in noncommutative field theory will be produced. Incidentally,
Figures 1 and 2 show other limit cases in our solution at the
large distances and different range of masses.

As we expressed before, there are conceptual differences,
in general relativity, curvature is used to geometrize the
gravitational interaction, geometry replaces the concept of
force, and the trajectories are determined, not by force
equations but by geodesics. Teleparallel gravity, on the other
hand, attributes gravitation to torsion. Torsion, however,
accounts for gravitation not by geometrizing the interaction
but by acting as a force [40, 41]. This is a definition used in
teleparallel gravity, whereas our model does not exactly coin-
cidewith teleparallel gravity (in the limit case only); therefore,
it is natural to have more complex results especially that
the definition of the existing force in torsion for gravitational
interactions is approved clearly in the limit of commutativity in
our model. Absolutely, attributing the gravitation to the force
equation in the relativity framework which is shown directly
through the commutative limit of our line element can be
utilized in the various branches of physics.
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