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Connections between some well-known concepts of uniform exponential
dichotomy for discrete-time systems in Banach spaces . . . . . . . . . . . . . . . . 15

Dominic Bucerzan, Crina Ratiu
Secret communication using cryptography and steganography . . . . . . . . . . 22

Violeta Chis
Fuzzy logic applications in power systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Octavian Cira
Inverse narcissistic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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Păstorel Gaşpar, Lorena Popa
Series representations for random distribution fields . . . . . . . . . . . . . . . . . . 63

Moţ Ghiocel, Popa Lorena
On quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Nicolae Marian Seimeanu, Mihail Megan
Three concepts of uniform polynomial dichotomy for discrete-time linear
systems in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Lavinia Sida, Păstorel Gaşpar
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Stability issues in infinite

dimensional spaces

Codruţa Stoica∗ Diana Pătraşcu Borlea†

Abstract

The aim of this paper is to define various concepts of stability for co-
cycles over non-autonomous dynamical systems, as generalizations of the
skew-evolution semiflows, such as exponential stability, (α, β)–exponential
stability, and two more general concepts, the (h, k)–stability and the
(h, k)–integral stability. Connections between these notions are also given.

Mathematics Subject Classification: 34D05, 93D20

Keywords: Dynamical systems, skew-evolution cocycles, exponential stability,

(α, β)–exponential stability, (h, k)–stability, (h, k)–integral stability

1 Preliminaries

In recent years, several concepts of the control theory, as stability, stabili-
zability, controllability or observability were refined, based on the fact that
the dynamical systems which describe processes from engineering, physics,
biology or economics are extremely complex and the identification of the
proper mathematical models is difficult.

In the qualitative theory of evolution equations, the exponential sta-
bility and instability are two of the most important asymptotic properties,
approached lately from various perspectives. Recently, other asymptotic
behaviors were studied, the dichotomy and the trichotomy, by generalizing
the techniques used in the investigation of the stability.

The stability theory puts into discussion the stability of solutions of
differential equations and of trajectories of dynamical systems under small
perturbations of initial conditions. Many parts of the qualitative theory of
differential equations and dynamical systems deal with asymptotic proper-
ties of solutions/ trajectories – what happens with the system after a long
period of time. If an orbit is well understood, it is natural to ask whether
a small change in the initial condition will lead to similar behavior.

The study of the behaviors of the evolution equations by means of
associated operator families has allowed to obtain answers to open prob-
lems by involving techniques of functional analysis and operator theory.

∗codruta.stoica@uav.ro Department of Mathematics and Computer Science, ”Aurel
Vlaicu” University of Arad, Romania
†dianab268@yahoo.com Department of Mathematics, West University of Timişoara, Roma-

nia
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Stability issues in infinite dimensional spaces 2

Remarkable results of the stability theory are due to J.L. Daleckii and
M.G. Krein (see [1]) and J.L. Massera and J.J. Schäffer (see [2]).

The concept of evolution operators arises naturally from the theory
of well-posed non-autonomous Cauchy problems, while the notion of lin-
ear skew-product semiflows is involved when considering the linearization
along an invariant manifold of a dynamical system generated by a nonli-
near differential equation. The skew-evolution semiflows, defined in [3],
are generalizations for both evolution operators and skew-product semi-
flows. The applicability of this notion was emphasized by P. Viet Hai in
[6] and [7], and by T. Yue, X.Q. Song, D.Q. Li in [8].

We consider in this paper the case of cocycles over multivalued dy-
namical systems (see [5]). We define various concepts of stability, charac-
terizations for these notions, as well as connections between them.

2 Definitions. Examples

X = (X, dX) denotes a complete metric space, P(X) the set of all non-
empty subsets of X, V a Banach space with the dual V ∗, B(V ) the space
of all bounded linear operators from V into itself. idX is the identity
map on X, I the identity operator on V and Y = X × V . We consider
the sets E = {f : R+ → [1,∞)

∣∣ ∃α ∈ R+ such that f(t) = eαt} and
T =

{
(t, s) ∈ R2

+, t ≥ s
}

.

Definition 2.1 A multivalued map ũ : T ×X → P(X) with
(s1) ũ(t, t, ·) = idX , ∀(t, x) ∈ R+ ×X;
(s2) ũ(t, t0, x) ⊆ ũ(t, s, ũ(s, t0, x)), ∀(t, s), (s, t0) ∈ T, x ∈ X is a gene-

ralized multivalued non–autonomous dynamical system on X.

Remark 2.2 In what follows we will consider the case of a mapping
u : T ×X → X with the properties

(s′1) u(t, t, x) = x, ∀(t, x) ∈ R+ ×X;
(s′2) u(t, t0, x) = u(t, s, u(s, t0, x)), ∀(t, s), (s, t0) ∈ T, x ∈ X, called

the semiflow associated to the generalized multivalued non–autonomous
dynamical system on X.

Definition 2.3 A mapping U : T ×X → B(V ) which satisfies
(c1) U(t, t, x) = I, ∀(t, x) ∈ R+ ×X;
(c2) U(t, s, u(s, t0, x))U(s, t0, x) = U(t, t0, x), ∀(t, s), (s, t0) ∈ T, x ∈ X,

is a skew-evolution cocycle over u.

Example 2.4 If U is a skew-evolution cocycle over u and λ ∈ R, then
Uλ : T × X → B(V ), Uλ(t, t0, x) = eλ(t−t0)U(t, t0, x) is the λ–shifted
skew-evolution cocycle over u.

Definition 2.5 A skew-evolution cocycle U has ω–growth if there exists
ω : R+ → [1,∞), a nondecreasing function, with lim

t→∞
ω(t) = ∞, that

satisfies ‖U(t, t0, x)v‖ ≤ ω(t − s) ‖U(s, t0, x)v‖, for all (t, s), (s, t0) ∈ T ,
(x, v) ∈ Y.

Remark 2.6 (i) If a skew-evolution cocycle U has ω–growth, then U−λ,
λ > 0, has also ω–growth.

(ii) The ω–growth is equivalent with the exponential growth (see [4]).
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Definition 2.7 A skew-evolution cocycle U is ∗-strongly measurable if for
every (t, t0, x, v

∗) ∈ T ×X × V ∗ the mapping s 7→ ‖U(t, s, u(s, t0, x))∗v∗‖
is measurable on [t0, t].

3 Stability types

3.1 Exponential stability

Definition 3.1 A skew-evolution cocycle U is exponentially stable if there
exist a mapping N : R+ → [1,∞) and a constant ν > 0 such that the rela-
tion eν(t−s) ‖U(t, t0, x)v‖ ≤ N(s) ‖U(s, t0, x)v‖ holds for all (t, s), (s, t0) ∈
T , (x, v) ∈ Y.

Proposition 3.2 A skew-evolution cocycle U has ω–growth if and only if
there exists λ > 0 such that the −λ-shifted skew-evolution cocycle U−λ is
exponentially stable.

Proof. Necessity. As U has ω–growth, according to Remark 2.6, there ex-
ist M ≥ 1 and ω > 0 such that e−ω(t−s) ‖U(s, t0, x)v‖ ≤M ‖U(t, t0, x)v‖,
for all (t, s), (s, t0) ∈ T , (x, v) ∈ Y . If we consider λ = 2ω > 0 we obtain

‖U−λ(t, t0, x)v‖ = e−λ(t−t0) ‖U(t, t0, x)v‖ ≤

≤Me−λ(t−t0)eω(t−s) ‖U(s, t0, x)v‖ =

= Me−λ(t−t0)eω(t−s) ‖U−λ(s, t0, x)v‖ eλ(s−t0) =

= Me−ω(t−s) ‖U−λ(s, t0, x)v‖ ,
for all (t, s), (s, t0) ∈ T and (x, v) ∈ Y , which shows that U−λ is exponen-
tially stable.

Sufficiency. As U−λ is exponentially stable, there exist N : R+ →
[1,∞) and ν > 0 such that eν(t−s) ‖U(t, t0, x)v‖ ≤ N(s) ‖U(s, t0, x)v‖, for
all (t, s), (s, t0) ∈ T , (x, v) ∈ Y. Further, we obtain

‖U(t, t0, x)v‖ = eλ(t−t0) ‖U−λ(t, t0, x)v‖ ≤

≤ N(s)eλ(t−t0)e−ν(t−s) ‖U−λ(s, t0, x)v‖ = N(s)eλ(t−s)e−ν(t−s) ‖U(s, t0, x)v‖ ,
for all (t, s), (s, t0) ∈ T and (x, v) ∈ Y . We denote

γ =

{
λ− ν, if λ > ν

1, if λ ≤ ν,

and we define ω : R+ → [1,∞) by ω(τ) = N(τ)eτ . Hence, U has ω–
growth. �

3.2 (α, β)–exponential stability

Definition 3.3 A skew-evolution cocycle U is (α, β)–exponentially stable
if there exist some constants N ≥ 1, α, β > 0 such that following relation
eα(t−s) ‖U(t, t0, x)v‖ ≤ Neβs ‖U(s, t0, x)v‖ holds for all (t, s), (s, t0) ∈ T ,
(x, v) ∈ Y.



Stability issues in infinite dimensional spaces 4

Proposition 3.4 A skew-evolution cocycle U with ω–growth is exponen-
tially stable if and only if there exists a constant λ > 0 such that the
−λ-shifted skew-evolution cocycle U−λ is (α, β)–exponentially stable.

Proof. It is analogous to the proof of Proposition 3.2. �

3.3 (h, k)–stability and (h, k)–integral stability

Definition 3.5 A skew-evolution cocycle U is said to be (h, k)–stable if
there exist N ≥ 1 and two continuous mappings h, k : R+ → R∗+ such
that

h(t− s) ‖U(t, t0, x)v‖ ≤ Nk(s) ‖U(s, t0, x)v‖ ,
for all (t, s), (s, t0) ∈ T , (x, v) ∈ Y.

Definition 3.6 A skew-evolution cocycle U is (h, k)–integrally stable if
there exist a constant D ≥ 1 and two continuous mappings h, k : R+ →
R∗+, where h is nondecreasing with the property h(s + t) ≤ h(s)h(t), for
all s, t ∈ R+, such that the relation∫ t

s

h(τ − s) ‖U(τ, t0, x)v‖ dτ ≤ Dk(s) ‖U(s, t0, x)v‖

holds for all (t, s), (s, t0) ∈ T , (x, v) ∈ Y.

3.4 Connections

3.4.1 (h, k)–stability vs. exponential stability and (α, β)–
exponential stability

Remark 3.7 (α, β)–exponentially stable =⇒
6⇐=

exponentially stable ([4]).

Remark 3.8 1) If a skew-evolution cocycle U is (h, k)–stable and h ∈ E ,
then U is exponentially stable;

2) If a skew-evolution cocycle U is (h, k)–stable and h, k ∈ E are given
by t 7→ eαt respectively t 7→ Meβt, M ≥ 1 and β > α, then U is (α, β)–
exponentially stable.

3.4.2 (h, k)–integral stability vs. (h, k)–stability

Theorem 3.9 A strongly measurable skew-evolution cocycle U with ω–
growth is exponentially stable if and only if there exists a constant λ > 0
such that the −λ-shifted skew-evolution cocycle U−λ is integrally stable.

Proof. Necessity. The existence of a mapping N : R+ → R∗+ and of
a constant ν > 0 such that ‖U(t, t0, x)v‖ ≤ N(s)e−ν(t−s) ‖U(s, t0, x)v‖,
for all (t, s), (s, t0) ∈ T and (x, v) ∈ Y , is assured by Definition 3.1. We

consider λ =
ν

2
> 0. We obtain successively∫ ∞

t0

e
ν
2
(s−t0) ‖U(s, t0, x)v‖ ds ≤ N(t0)

∫ ∞
t0

e−
ν
2
(s−t0) ‖v‖ ds =

= N(t0)

∫ ∞
0

e−
ν
2
τ ‖v‖ dτ ≤ Ñ(t0) ‖v‖ ,
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for all (t0, x, v) ∈ R+×Y , where we have denoted Ñ(t0) =
2

ν
N(t0), which

shows that U−λ is integrally stable.
Sufficiency. The −λ-shifted skew-evolution cocycle U−λ with λ > 0 is

integrally stable, with ω–growth, hence, it is stable. Then there exists a
mapping M̃ : R+ → R∗+ such that eα(t−t0) ‖U(t, t0, x)v‖ ≤ M̃(t0) ‖v‖, for
all (t, t0) ∈ T and (x, v) ∈ Y , which proves the exponential stability of
the skew-evolution cocycle U and ends the proof. �

Theorem 3.10 A (h, k)–integrally stable skew-evolution cocycle U with
ω–growth is (h, k)–stable.

Proof. According to Definition 2.5 and Remark 2.6, there exist some con-
stantsM ≥ 1 and γ > 0 such that ‖U(t, t0, x)v‖ ≤Meγ(t−s) ‖U(s, t0, x)v‖,
for all (t, s), (s, t0) ∈ T , (x, v) ∈ Y .

Let t ∈ [s, s+1). We have h(t−s) ‖U(t, t0, x)v‖ ≤Meγh(1) ‖U(s, t0, x)v‖,
for all (x, v) ∈ Y.

Let now s ∈ [t− 1, t]. We obtain successively

h(t− s) ‖U(t, t0, x)v‖ =

∫ t

t−1

h(t− s) ‖U(t, t0, x)v‖ dτ ≤

≤
∫ t

t−1

h(t− τ)h(τ − s) ‖U(t, τ, u(τ, t0, x))U(s, t0, x)v‖ dτ ≤

≤Meγh(1)

∫ t

s

h(τ − s) ‖U(τ, t0, x)v‖ dτ ≤ DMeγh(1)k(s) ‖U(s, t0, x)v‖ ,

for all (x, v) ∈ Y . Hence, U is (h, k)–stable. �

4 Conclusions

The dynamical systems, used to model processes in computer science,
biology, economics, physics, chemistry and many other fields, deal with
the analysis of the long-time behavior. One of the central interests in
the asymptotic behavior of dynamical systems is to find conditions for
their solutions to be stable, unstable or exponential dichotomic. The
skew-evolution cocyles generalize the notions of semigroups of operators,
evolution families, evolution operators or skew-product semiflows, being
suitable to approach the study of the asymptotic properties of the evolu-
tion equations from a non-uniform point of view.

The generality of the concepts presented in this paper is given by the
fact that in the definitions of the ω–growth, of the (h, k)–stability and
(h, k)–integral stability, exponentials are not necessarily involved.

Acknowledgements. The authors gratefully acknowledge helpful
suggestions from Professor Mihail Megan. We would also like to express
our special thanks to the referees for their support in preparing this paper.
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Luhn prime numbers

Octavian Cira∗ Florentin Smarandache†

Abstract

The first prime number with the special property that its addition with
reversal gives as result a prime number too is 299. The prime numbers
with this property will be called Luhn prime numbers. In this article
we intend to present a performing algorithm for determining the Luhn
prime numbers. Using the presented algorithm all the 50598 Luhn prime
numbers have been, for p prime smaller than 2 · 107.

1 Introduction

The number 299 is the smallest prime number that added with his reverse gives
as result a prime number, too. As 1151 = 229 + 922 is prime.

The first that noted this special property the number 229 has, was Norman
Luhn (after 9 February 1999), on the Prime Curios website [15]. The prime
numbers with this property will be later called Luhn prime numbers.

In the Whats Special About This Number? list [10], a list that contains all
the numbers between 1 and 9999; beside the number 229 is mentioned that his
most important property is that, adding with reversal the resulting number is
prime too.

The On-Line Encyclopedia of Integer Sequences, [9, A061783], presents a list
1000 Luhn prime numbers. We owe this list to Harry J. Smith, since 28 July
2009. On the same website it is mentioned that Harvey P. Dale published on 27
November 2010 a list that contains 3000 Luhn prime numbers and Bruno Berselli
published on 5 August 2013 a list that contains 2400 Luhn prime numbers.

2 Smarandache’s function

The function µ : N∗ → N∗, µ(n) = m, where m is the smallest natural number
with the property that n divides m! (or m! is a multiple of n) is know in the
specialty literature as Smarandache’s function, [5, 6, 12]. The values resulting
from n = 1, 2, . . . , 18 are: 1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6. These

∗octavian.cira@uav.ro Department of Mathematics and Computer Science, ”Aurel
Vlaicu” University of Arad, România
†fsmarandache@gmail.com Mathematics & Science Department, University of New Mexico,

USA

7



Luhn prime numbers 8

values were obtained with an algorithm that results from µ’s definition. The
program using this algorithm cannot be used for n ≥ 19 because the numbers
19!, 20!, . . . are numbers which exceed the 17 decimal digits limit and the classic
computing model (without the arbitrary precisions arithmetic [13]) will generate
errors due to the way numbers are represented in the computers memory.

3 Kempner’s algorithm

Kempner created an algorithm to calculate µ(n) using classical factorization
n = pp11 ·p

p2
2 · · · ppss , prime number and the generalized numeration base (αi)[pi],

for i = 1, s, [1]. Partial solutions to the algorithm for µ(n)’s calculation have
been given earlier by Lucas and Neuberg, [12].

Remark 3.1 If n ∈ N∗, n can be decomposed in a product of prime numbers
n = pα1

1 · p
α2
2 · · · pαs

s , were pi are prime numbers so that p1 < p2 < . . . < ps, and
s ≥ 1, thus Kempner’s algorithm for calculating the µ function is.

µ(n) = max

{
p1 ·

(
α1[p1]

)
(p1)

, p2 ·
(
α2[p2]

)
(p2)

, . . . , ps ·
(
αs[ps]

)
(ps)

}
,

where by
(
α[p]

)
(p)

we understand that α is ”written” in the numeration base p

(noted α[p]) and it is ”read” in the p numeration base (noted β(p), were β =
α[p]), [6, p. 39].

4 Programs

The list of prime numbers was generated by a program that uses the Sieve of
Eratosthenes the linear version of Pritchard, [3], which is the fastest algorithm
to generate prime numbers until the limit of L, if L ≤ 108. The list of prime
numbers until to 2 · 107 is generated in about 5 seconds. For the limit L > 108

the fastest algorithm for generating the prime numbers is the Sieve of Atkin,
[7].

Program 4.1 The Program for the Sieve of Eratosthenes, the linear version of
Pritchard using minimal memory space is:

CEPbm(L) := λ← floor
(
L
2

)
for k ∈ 1..λ
is primek ← 1

prime← (2 3 5 7)T

i← last(prime) + 1
for j ∈ 4, 7..λ
is primej ← 0

k ← 3
s← (primek−1)2
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t← (primek)2

while t ≤ L
for j ∈ t, t+ 2 · primek..L
is prime j−1

2
← 0

for j ∈ s+ 2, s+ 4..t− 2
if is prime j−1

2
= 1

primei ← j
i← i+ 1

s← t
k ← k + 1
t← (primek)2

for j ∈ s+ 2, s+ 4..L
if is prime j−1

2
=1

primei ← j
i← i+ 1

return prime

Program 4.2 The factorization program of a natural number; this program
uses the vector p representing prime numbers, generated with the Sieve of Er-
atosthenes. The Sieve of Eratosthenes is called upon trough the following se-
quence:

L := 2 · 107 t0 = time(0) p := CEPbm(L) t1 = time(1)

(t1 − t0)s = 5.064s last(p) = 1270607 plast(p) = 19999999

Fa(m) := return (”m = ” m ” > ca ultimul p2”) if m > (plast(p))
2

j ← 1
k ← 0
f ← (1 1)
while m ≥ pj

if mod (m, pj)=0
k ← k + 1

m← m

pj
otherwise
f ← stack[f, (pj , k)] if k > 0
j ← j + 1
k ← 0

f ← stack[f, (pj , k)] if k > 0
return submatrix(f, 2, rows(f), 1, 2)

We presented the Kempner’s algorithm using Mathcad programs required
for the algorithm.

Program 4.3 The function counting all the digits in the p base of numeration
in which is n.
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ncb(n, p) := return ceil(log(n, p)) if n > 1
return 1 otherwise

Where ceil(x) is a Mathcad function which gives the smallest integer ≥ x
and log(n, p) is logarithm in base p from n.

Program 4.4 The program intended to generate the p generalized base of nu-
meration

(
noted by Smarandache [p]

)
for a number with m digits.

a(p,m) := for i ∈ 1..m

ai ←
pi − 1

p− 1
return a

Program 4.5 The program intended to generate for the p base of numeration(
noted by Smarandache (p)

)
to write the α number.

b(α, p) := return (1) if p = 1
for i ∈ 1..ncb(α, p)
bi ← pi−1

return b

Program 4.6 Program that determines the digits of the generalized base of
numeration [p] for the number n.

Nbg(n, p) := m← ncb(n, p)
a← a(p,m)
return (1) if m=0
for i ∈ m..1

ci ← trunc

(
n

ai

)
n← mod (n, ai)

return c

Where trunc(x) returns the integer part of x by removing the fractional part,
and mod(x, y) returns the remainder on dividing x by y (x modulo y).

Program 4.7 Program for Smarandache’s function.

µ(n) := return ”Err. n nu este intreg” if n 6= trunc(n)
return ”Err. n < 1” if n < 1
return (1) if n=1
f ← Fa(n)
p← f 〈1〉

α← f 〈2〉

for k = 1..rows(p)
ηk ← pk ·Nbg(αk, pk) · b(αk, pk)

return max(η)
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This program calls the Fa(n) factorization with prime numbers. The program
uses the Smarandache’s Remark 3.1 – about the Kempner algorithm. The µ.prn
file generation is done once. The reading of this generated file in Mathcad’s
documents results in a great time–save.

Program 4.8 Program with which the file µ.prn is generated

V Fµ(N) := µ1 ← 1
for n ∈ 2..N

µn ← µ(n)
return µ

This program calls the program 4.7 for calculating the value of the µ function.
The sequence of the µ.prn file generation is:

t0 := time(0) WRITEPRN(”µ.prn”) := V Fµ(2 · 107) t1 := time(1)

(t1 − t0)sec = ”5 : 17 : 32.625”hhmmss

Smarandache’s function is important because it characterizes prime numbers
– through the following fundamental property:

Theorem 4.9 Let be p an integer > 4, than p is prime number if and only if
µ(p) = p.

Proof. See [6, p. 31]. �
Hence, the fixed points of this function are prime numbers (to which is added

4). Due to this property the function is used as primality test.

Program 4.10 Program for testing µ’s primality. This program returns the 0
value if the number is not prime number and the 1 value if the number is a
prime. The file µ.prn will be read and it will be assigned to the µ vector.

ORIGIN := 1 µ := READPRN(” . . . \µ.prn”)

Tpµ(n) := return ”Err. n < 1 sau n /∈ Z” if n < 1 ∨ n 6= trunc(n)
if n > 4
return 0 if µn 6= n
return 1 otherwise

otherwise
return 0 if n=1 ∨ n=4
return 1 otherwise

Program 4.11 Program that provides the reveres of the given m number.

R(m) := n← floor(log(m))
x← m · 10−n

for k ∈ 1..n
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ck ← trunc(x)
x← (x− ck) · 10

cn+1 ← round(x)
Rm← 0
for k ∈ n+ 1..2
Rm← (Rm+ ck) · 10

return Rm+ c1

Where floor(x) returns the greatest integer ≤ x and round(x) returns x rounded
to the nearest integer.

Program 4.12 Search program for the Luhn prime numbers.

PLuhn(L) := n← last(p)
S ← (229)
k ← 51
while pk ≤ L

N ← R(pk) + pk
S ← stack(S, pk) if Tpµ(N) = 1
k ← k + 1

return S

The function stack(A,B, . . .) is applied for merging matrixes top-down. The
number of columns in matrixes should also be the same. The discussed functions
could be applied to vectors as well.

Execution of the program PLuhn was made with sequence

S := PLuhn(2 · 107)

The initialization of the S stack is done with the vector that contains the
number 229. The variable k has the initial value of 51 because the index of the
229 prime number is 50, so that the search for the Luhn prime numbers will
begin with p51 = 233.

5 List of prime numbers Luhn

We present a partial list of the 50598 Luhn prime numbers smaller than 2 · 107

(the first 321 and the last 120):
229 239 241 257 269 271 277 281 439 443 463 467 479 499 613 641 653 661 673
677 683 691 811 823 839 863 881 20011 20029 20047 20051 20101 20161 20201
20249 20269 20347 20389 20399 20441 20477 20479 20507 20521 20611 20627
20717 20759 20809 20879 20887 20897 20981 21001 21019 21089 21157 21169
21211 21377 21379 21419 21467 21491 21521 21529 21559 21569 21577 21601
21611 21617 21647 21661 21701 21727 21751 21767 21817 21841 21851 21859
21881 21961 21991 22027 22031 22039 22079 22091 22147 22159 22171 22229
22247 22291 22367 22369 22397 22409 22469 22481 22501 22511 22549 22567
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22571 22637 22651 22669 22699 22717 22739 22741 22807 22859 22871 22877
22961 23017 23021 23029 23081 23087 23099 23131 23189 23197 23279 23357
23369 23417 23447 23459 23497 23509 23539 23549 23557 23561 23627 23689
23747 23761 23831 23857 23879 23899 23971 24007 24019 24071 24077 24091
24121 24151 24179 24181 24229 24359 24379 24407 24419 24439 24481 24499
24517 24547 24551 24631 24799 24821 24847 24851 24889 24979 24989 25031
25057 25097 25111 25117 25121 25169 25171 25189 25219 25261 25339 25349
25367 25409 25439 25469 25471 25537 25541 25621 25639 25741 25799 25801
25819 25841 25847 25931 25939 25951 25969 26021 26107 26111 26119 26161
26189 26209 26249 26251 26339 26357 26417 26459 26479 26489 26591 26627
26681 26701 26717 26731 26801 26849 26921 26959 26981 27011 27059 27061
27077 27109 27179 27239 27241 27271 27277 27281 27329 27407 27409 27431
27449 27457 27479 27481 27509 27581 27617 27691 27779 27791 27809 27817
27827 27901 27919 28001 28019 28027 28031 28051 28111 28229 28307 28309
28319 28409 28439 28447 28571 28597 28607 28661 28697 28711 28751 28759
28807 28817 28879 28901 28909 28921 28949 28961 28979 29009 29017 29021
29027 29101 29129 29131 29137 29167 29191 29221 29251 29327 29389 29411
29429 29437 29501 29587 29629 29671 29741 29759 29819 29867 29989 . . .
8990143 8990209 8990353 8990441 8990563 8990791 8990843 8990881 8990929
8990981 8991163 8991223 8991371 8991379 8991431 8991529 8991553 8991613
8991743 8991989 8992069 8992091 8992121 8992153 8992189 8992199 8992229
8992259 8992283 8992483 8992493 8992549 8992561 8992631 8992861 8992993
8993071 8993249 8993363 8993401 8993419 8993443 8993489 8993563 8993723
8993749 8993773 8993861 8993921 8993951 8994091 8994109 8994121 8994169
8994299 8994463 8994473 8994563 8994613 8994721 8994731 8994859 8994871
8994943 8995003 8995069 8995111 8995451 8995513 8995751 8995841 8995939
8996041 8996131 8996401 8996521 8996543 8996651 8996681 8996759 8996831
8996833 8996843 8996863 8996903 8997059 8997083 8997101 8997463 8997529
8997553 8997671 8997701 8997871 8997889 8997931 8997943 8997979 8998159
8998261 8998333 8998373 8998411 8998643 8998709 8998813 8998919 8999099
8999161 8999183 8999219 8999311 8999323 8999339 8999383 8999651 8999671
8999761 8999899 8999981

6 Conclusions

The list of all Luhn prime numbers, that totalized 50598 numbers, was deter-
mined within a time span of 54 seconds, on an Intel processor of 2.20 GHz.
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of uniform exponential dichotomy for

discrete-time systems in Banach spaces
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Abstract

The aim of this paper is to unify our recent works concerning three
concepts of uniform exponential dichotomy defined for linear discrete-time
systems in Banach spaces: uniform strong exponential dichotomy, uniform
exponential dichotomy,uniform weak exponential dichotomy. By defining
them in the case of strongly invariant sequences of projections, we point
out the connections between them and we also make reference to previous
works in this field, by linking them as well with the concepts defined for
noninvertible systems.
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1 Introduction

The notion of uniform exponential dichotomy plays a key role in the
study of the asymptotic behaviors of discrete-time linear systems in Ba-
nach spaces. Several characterizations of such concepts and interesting
results were obtained recently, and we point out a selection of them, as
well as the references within: [1], [2], [3], [4], [6], [7], [9], [11]. A natural
generalization of the dichotomy property, when it cannot completely de-
scribe the system’s behavior due to the presence of a central manifold, is
the property of uniform exponential trichotomy, and several recent devel-
opments have been made ([5], [8] and the references therein).

In this paper we define three concepts of uniform exponential di-
chotomy for discrete-time linear systems in Banach spaces and establish
the connections between them. Using the previous concepts and results
obtained in [1] and [2], we establish the connections that are present be-
tween five concepts of uniform exponential dichotomy, two arising from
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the cited sources. We also pose two remaining open problems in success-
fully linking all the five presented concepts.

2 Preliminaries

Let X be a Banach space and B(X) the Banach algebra of all bounded
linear operators on X. The norms on X and on B(X) will be denoted
by ‖ · ‖. The identity operator on X is denoted by I. We will denote by
∆ = {(m,n) ∈ N2 : m ≥ n}.

We consider the linear difference system

xn+1 = Anxn, (A)

where A : N→ B(X) is a given sequence.

Definition 2.1 The discrete evolution operator associated to the sys-
tem (A) is defined, for (m,n) ∈ ∆, by:

Anm =

{
Am−1 · . . . ·An, if m > n
I, if m = n

(2.1)

Remark 2.2 It is obvious that AnmA
p
n = Apm, for all (m,n), (n, p) ∈ ∆

and every solution of (A) satisfies xm = Anmxn for all (m,n) ∈ ∆.

Definition 2.3 An operator valued sequence P : N → B(X) is called a
sequence of projections if P 2

n = Pn for all n ∈ N.

If P : N → B(X) is a sequence of projections, then the sequence
Q : N → B(X) defined by Qn = I − Pn is also a sequence of projections,
called the complementary sequence of projections of P .

Definition 2.4 A sequence of projections P : N→ B(X) is called

• invariant for the system (A) if for all n ∈ N we have that AnPn =
Pn+1An;

• strongly invariant for the system (A) if it is invariant for (A)
and for all n ∈ N, the restriction An : Ker Pn → Ker Pn+1 is an
isomorphism;

• bounded if there exist M ≥ 1 such that for all n ∈ N, ‖Pn‖ ≤M.

If the sequence of projections P : N→ B(X) is invariant for the system
(A), then we will say that (A,P ) is a dichotomy pair.

Remark 2.5 If the sequence of projections P is strongly invariant for the
system (A) then

(i) for every n ∈ N there is an isomorphism Bn from the Ker Pn+1 to
Ker Pn such that AnBnQn+1 = Qn and BnAnQn = Qn;

(ii) for all (m,n) ∈ ∆ there is an isomorphism Bnm : Ker Pm → Ker Pn
with AnmB

n
mQm = Qm and BnmA

n
mQn = Qn for all (m,n) ∈ ∆.

Throughout the paper, if not stated otherwise, we will consider P :
N→ B(X) be a sequence of projections which is strongly invariant for the
linear discrete-time system (A).
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3 Uniform exponential dichotomies

We will proceed by presenting the three main concepts of uniform expo-
nential dichotomy with strongly invariant sequences of projections.

Definition 3.1 Let (A,P ) be a dichotomy pair in which P : N→ B(X) is
strongly invariant for the discrete system (A). We say that the dichotomy
pair (A,P ) is:

• uniformly strongly exponentially dichotomic (u.s.e.d) if there
exist N ≥ 1 and α > 0 such that for all (m,n) ∈ ∆,

(used1) ‖AnmPn‖ ≤ Ne−α(m−n)

(used2) ‖BnmQm‖ ≤ Ne−α(m−n).

• uniformly exponentially dichotomic (u.e.d) if there exist N ≥ 1
and α > 0 such that for all (m,n, x) ∈ ∆×X,

(ued1) ‖AnmPnx‖ ≤ Ne−α(m−n)‖Pnx‖

(ued2) ‖BnmQmx‖ ≤ Ne−α(m−n)‖Qmx‖.

• uniformly weakly exponentially dichotomic (u.w.e.d) if there
exist N ≥ 1 and α > 0 such that for all (m,n) ∈ ∆,

(uwed1) ‖AnmPn‖ ≤ Ne−α(m−n)‖Pn‖

(uwed2) ‖BnmfQm‖ ≤ Ne−α(m−n)‖Qm‖.

A first set of connections between the above defined concepts is given
by the following result.

Proposition 3.2 The following assertions hold.

(a) (A,P ) is u.s.e.d if and only if there exist N ≥ 1 and α > 0 such that
for all (m,n, x) ∈ ∆×X the following conditions hold:

(used′1) ‖AnmPnx‖ ≤ Ne−α(m−n)‖x‖

(used′2) ‖BnmQmx‖ ≤ Ne−α(m−n)‖x‖.

(b) If the dichotomy pair (A,P ) is u.s.e.d then (A,P ) is u.e.d and P :
N→ B(X) is bounded.

(c) If the dichotomy pair (A,P ) is u.e.d then (A,P ) is u.w.e.d.

(d) If P : N → B(X) is bounded and (A,P ) is u.w.e.d then (A,P ) is
u.s.e.d.

Proof. (a) follows straightforward from the definition of the operator
norm on B(X). To prove (b), let (m,n, x) ∈ ∆×X and N,α given by the
u.s.e.d property of the pair (A,P ). The conclusion follows by considering
the vectors Pnx and Qmx in (used′1) and (used′2) respectively. Moreover,
by taking m = n in (used1) we obtain that ‖Pn‖ ≤ N .
Assertion (c) follows immediately, by taking the operator norm in (ued1)
and (ued2). In order to prove (d), consider (m,n) ∈ ∆ and N,α given by
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the u.w.e.d property of (A,P ). Consider M ≥ 1 to be an upper bound
for P : N→ B(X) . From the following estimations

‖AnmPn‖ ≤ Ne−α(m−n)‖Pn‖ ≤ 2MNe−α(m−n)

‖BnmQm‖ ≤ Ne−α(m−n)‖Qm‖ ≤ 2MNe−α(m−n)

we obtain that (A,P ) is u.s.e.d with constants 2MN and α. �

Proposition 3.3 A dichotomy pair (A,P ) is u.e.d if and only if there
exist N,α > 0 such that for all (m,n, x) ∈ ∆×X,

(i) ‖AnmPnx‖ ≤ Ne−α(m−n)‖Pnx‖

(ii) ‖Qnx‖ ≤ Ne−α(m−n)‖AnmQnx‖.

Proof. We only have to prove that (ued2) ⇔ (ii). Let (m,n, x) ∈
∆ × X. For the necessity, we compute ‖Qnx‖ = ‖BnmQmAnmQnx‖ ≤
Ne−α(m−n)‖AnmQnx‖. The sufficiency follows from ‖BnmQmx‖ =
‖QnBnmQmx‖ ≤ Ne−α(m−n)‖AnmQnBnmQmx‖ = Ne−α(m−n)‖Qmx‖. �

Remark 3.4 The above proposition shows us that in both cases in which
P is invariant and strongly invariant for (A) respectively, the dichotomy
concepts are equivalent. In the next section we will see that in the case of
the strong and weak concepts, this is not the case.

Remark 3.5 If a pair (A,P ) is u.e.d, it does not necessarily follow that
(A,P ) is u.s.e.d. The following example points out this fact.

Example 3.6 On X = R2 endowed with the max-norm, consider, for
every n ∈ N, Pn, An : R2 → R2 defined, for x = (x1, x2) ∈ R2, by

Pnx = (x1 + ln(n+ 1) · x2, 0), An =
1

e
Pn + eQn+1,

where Qn = I − Pn. We have that P : N → B(X) is a sequence of
projections which is strongly invariant for the system (A). The evolution
operator associated to (A) is given by

Anm = en−mPn + em−nQm, (m,n) ∈ ∆.

Having in mind that for all (m,n, x) ∈ ∆ ×X, ‖AnmPnx‖ = en−m‖Pnx‖
and ‖AnmQnx‖ = em−n‖Qmx‖ ≥ em−n‖Qnx‖ it follows that the pair
(A,P ) is u.e.d. But (A,P ) cannot be u.s.e.d because, from the fact that
for all n ∈ N, ‖Pn(0, 1)‖ = ln(n + 1), it follows that ‖Pn‖ ≥ ln(n + 1)
hence P : N→ B(X) is not bounded.

Remark 3.7 From the above example, in light of (iii) from Proposition
3.2, we deduce that the dichotomy pair (A,P ) from Example 3.6 is u.w.e.d
but fails to be u.s.e.d.

Open problem. At this moment we do not know wether the impli-
cation ”(A,P ) is u.w.e.d ⇒ (A,P ) is u.s.e.d” is generally true or not.
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4 Connections with the dichotomy con-
cepts for noninvertible discrete systems

For a more facile reading of the paper, the concepts defined in this para-
graph will be denoted with a bar over their abbreviations. Although these
concepts can be defined for dichotomy pairs (A,P ) without the invertibil-
ity condition on the kernels of the projections, we will assume, as in the
previous section, that P : N → B(X) is strongly invariant for the sys-
tem (A), in order to establish some connections between the concepts
presented throughout this paper.

Definition 4.1 We say that the dichotomy pair (A,P ) is:

• u.s.e.d if there exist N ≥ 1 and α > 0 such that for all (m,n) ∈ ∆

(used1) ‖AnmPn‖ ≤ Ne−α(m−n)

(used1) 1 ≤ Ne−α(m−n)‖AnmQn‖

• u.w.e.d if there exist N ≥ 1 and α > 0 such that for all (m,n) ∈ ∆

(uwed1) ‖AnmPn‖ ≤ Ne−α(m−n)‖Pn‖

(uwed1) ‖Qn‖ ≤ Ne−α(m−n)‖AnmQn‖

Remark 4.2 The above defined concepts, in the continuous case, were
studied in [1], and the connections between them can easily be estab-
lished in a similar manner. Moreover, in the general framework of (h, k)-
dichotomies for discrete-time linear systems, the u.s.e.d concept is used
in [2]. Taking into account the results from these two papers, we state the
following result.

Proposition 4.3 (a) If (A,P ) is u.s.e.d then (A,P ) is u.s.e.d.

(b) If (A,P ) is u.s.e.d then (A,P ) is u.w.e.d.

(c) If (A,P ) is u.e.d then (A,P ) is u.w.e.d.

(d) The concepts of u.s.e.d and u.e.d do not imply each other, exist-
ing linear discrete-time systems that satisfy one condition, but not
verifying the other.

(e) If (A,P ) is u.w.e.d it does not result that (A,P ) is u.e.d.

(f) If (A,P ) is u.w.e.d it does not result that (A,P ) is u.s.e.d.

Proof. Assertion (a) follows from the fact tha for all (m,n) ∈ ∆, ‖Qnx‖ ≤
‖BnmQm‖ · ‖AnmQnx‖. Assertion (b) follows from the fact that if (A,P )
is u.s.e.d then 1 ≤ max{‖Pn‖, ‖Qn‖} ≤ N , for all n ∈ N. Assertion (c)
follows by taking the operator norm in (i) and (ii) in Proposition 3.3.
In order to prove assertion (d), we refer to Examples 13 and 14 from
[2], for the particular case in which hn = en = kn, n ∈ N. Finally, in
order to prove (e) we refer to Example 4.4. For (f), Example 3.6 gives a
dichotomy pair (A,P ) which is also u.w.e.d but cannot be u.s.e.d, because
P : N→ B(X) is not bunded. �



Connections between uniform exponential dichotomy concepts 20

Example 4.4 We will give an example in the general case of noninvert-
ible linear systems. On X = R3 endowed with the max-norm, consider
the system (A) described by the operators An : R3 → R3 defined, for all
n ∈ N and x = (x1, x2, x3) ∈ R3, by Anx = (e−1x1, ex2, 0). The evolution
operator associated to the system (A) is given by

Anmx =

{
x m = n

(en−mx1, e
m−nx2, 0) m ≥ n+ 1

, ∀(m,n, x) ∈ ∆× R3.

Define, for every n ∈ N and x ∈ R3, Pnx = (x1, 0, 0). We have that
(A,P ) is a dichotomy pair. Moreover, for all (m,n) ∈ ∆, ‖AnmPn‖ =
e−(m−n)‖Pn‖ and ‖AnmQn‖ = em−n‖Qn‖, thus (A,P ) is u.w.e.d. By as-
suming that (A,P ) is s.e.d, in particular, for x = (0, 0, 1), we would obtain
that 0 = Ne−α(m−n)‖AnmQnx‖ ≥ ‖Qnx‖ = 1 which is a contradiction.

Proposition 4.5 If (A,P ) is u.s.e.d then (A,P ) is u.s.e.d.

Proof. It is similar to the proof of Proposition 23 from [2]. �

Remark 4.6 The converse of the preceding proposition does not generally
hold, and we refer to Example 24 form [2].

Open problem. At this moment, we do not have an answer to the
implication ”(A,P ) is u.w.e.d ⇒ (A,P ) is u.w.e.d”.

Remark 4.7 Regarding the open problem from above, we have a partial
answer, which states that if (A,P ) is u.w.e.d then it does not necessarily
imply that (A,P ) is u.w.e.d, as it can be seen from Example 4.8.

Example 4.8 On X = R3 endowed with the max-norm, consider, for
n,∈ N, An, Pn : R3 → R3 defined, for every x = (x1, x2, x3) ∈ R3, by

Anx = (
1

e
x1, ex2, e

−(2n+1)x3), Pnx = (x1, 0, 0).

The evolution operator associated to the system (A) is given by

Anmx = (en−mx1, e
m−nx2, e

n2−m2

x3), (m,n, x) ∈ ∆× R3.

It is easy to check that (A,P ) is a dichotomy pair, that P : N→ B(X) is
strongly invariant for (A) and ‖AnmPn‖ = en−m‖Pn‖, ‖AnmQn(0, 1, 1)‖ ≥
em−n‖Qn(0, 1, 1)‖, from where ‖AnmQn‖ ≥ em−n‖Qn‖ hence (A,P ) is
u.w.e.d. Assume, by a contradiction, that (A,P ) is u.w.e.d. Then there
exist N ≥ 1 and α > 0 such that for all (m,n) ∈ ∆, we have that
‖BnmQm‖ ≤ Ne−α(m−n)‖Qm‖. Taking into account that for all (m,n, x) ∈
∆ × R3, ‖BnmQmx‖ = max{en−m|x2|, em

2−n2

|x3|}, for x0 = (0, 0, 1),

we get that for all (m,n) ∈ ∆, ‖BnmQmx0‖ = em
2−n2

‖Qmx0‖ hence

‖BnmQm‖ ≥ em
2−n2

. We finally obtain that

em
2−n2

≤ ‖BnmQm‖ ≤ Ne−α(m−n)‖Qm‖ = Ne−α(m−n), ∀(m,n) ∈ ∆,

which is a contradiction hence (A,P ) is not u.w.e.d.
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Remark 4.9 Taking into account the connections between the studied
concepts, the results from the cited papers and the open problems stated
in this paper, we can emphasize the connections between the presented
concepts throughout the following diagram.

u.s.e.d
6⇐⇒ u.e.d ⇒ u.w.e.d

6⇒⇐ u.s.e.d
6⇑⇓ m 6⇑ 6⇑⇓

u.s.e.d
6⇐
6⇒ u.e.d

6⇐⇒ u.w.e.d
6⇒⇐ u.s.e.d
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Secret communication using cryptography and

steganography

Dominic Bucerzan ∗ Crina Ratiu †

Abstract

Cryptography and steganography are two techniques used to provide
data confidentiality. Cryptography scrambles the digital data so the
new content becomes impossible to understand to unauthorized users.
Steganography embeds the digital data in a cover file (usually an image
or audio file). Steganography, is a technique that ”camouflages” a commu-
nication to hide its existence and make it seem ”invisible” to unauthorized
users. In this paper we present both methods, but we insist on the advan-
tage provided by combining these two methods in order to improve the
security of communication over Internet by means of commonly available
equipments as PCs, tablets and smart phones.

Mathematics Subject Classification: 94A62
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1 Introduction

Nowadays we are witnessing a high level of development in both hardware
and software technology. Even though the progress in this fields has oc-
curred with a higher speed than ever before, digital information security
problems remain present and become an interdisciplinary issue, having to
be constantly optimized, developed and innovated [1].

In figure 1 we present briefly a classification of the security tech-
niques used today to ensure the main characteristics that defines digital
information: integrity, confidentiality, availability, authenticity and no-
repudiation[8].

In the scientific literature, Simmons, in 1983, proposed the ”Prisoners’
Problem” to define the digital information security environment [3]. The
”Prisoners Problem” describes Alice and Bob who are in jail and wish
to establish an escape plan; they may communicate through the warden,
Willie who shouldn’t suspect and uncover their plan. In this situation
the two prisoners must find a way to hide their secret communication
in order not to arouse any suspicion from Willie [3]. So Alice and Bob
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Vlaicu” University of Arad, Romania
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Figure 1: Security techniques [1]

use cryptography combined with steganography to encode and hide their
messages.

These two techniques are widely used today to ensure the security of
the information transferred through available channels for communica-
tion, which are vulnerable to interception. Moreover in recent years these
techniques were combined and used together to optimize the security of
digital information [1].

2 Cryptography

Cryptography is a technique that scrambles digital data in a way that
it becomes unreadable to unauthorized users in the process of storing or
transferring it to its intended receiver using today’s open channels for
communication.

Cryptography is recognized today to be the main component of the
security policy of every organization and considered a standard to digital
data security [4].

Kirchhoff has stated the principle that stands as a basis for every
cryptographic system: the security of an encryption system should rely
on the secrecy of the encryption/decryption key and not on the secrecy of
the algorithm used [4]. This means that if an unauthorized user knows the
algorithm used for encryption, without knowing the key used, is unable to
decrypt the secret data. Having this into consideration we may say that
the security level of a cryptographic system stands in the length of the
key used. The larger the key, the longer is the time needed to uncover it
[4].

According to the type of key used, cryptographic systems are classified
as [5]:

• Secret / Symmetric key cryptography: the same key is used for both
processes encryption and decryption. The sender uses the key to
encode the secret data; the receiver uses the same key to decode the
data received.

• Public / Asymmetric key cryptography: it uses two key for encrypt-
ing and decrypting the data. The sender uses the public key of the
receiver (the key is public, known by anyone) to encrypt the data;
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the receiver uses his personal secret key (only the receiver knows the
secret key) to decode the received data.

The cryptographic methods mentioned are the basis for two popular
techniques used today in information security technology, namely:

• Digital signature: ensures the authentication of the sender

• Hash function: ensures the authentication and the integrity of the
sent data.

3 Steganography

Steganography is a technique that embeds information in different types of
files (usually media files) in such a way that its presence becomes ”difficult
to notice” [1].

Some countries raised restrictions upon the usage of cryptography; in
this scenario steganography became an alternative for confidential commu-
nications. Steganography was seen as a solution to this situation because
a steganographic message couldn’t be detected so its usage couldn’t be
controlled [1].

By comparison with cryptography which only scrambles the message in
a way unreadable for unauthorized users, steganography embeds the data
using a cover file in such a way that the changes made to the cover file are
not obvious to human means of observation and it can pass through open
channels of communication without raising any attention or suspicion.

Steganography is not something new, it is a technique used since an-
tiquity. Nowadays it has evolved and developed to be used with digital
technology. Most used cover files for steganography are media files like
video, audio and especially image files[7].

Image files are proper to steganography due to their structure, to the
fact that the changes made to an image file are difficult to notice with
the naked eye. Also, the technology has evolved and it became cheaper,
hence digital images are omnipresent in everyday life.

One of the most used methods in digital image steganography is the
LSB (Last Significant Bit) technique also known as noise insertion. This
technique usually uses as cover files digital images of RGB type [8]. By
using the last significant bits of the bytes of the original cover file it embeds
the bits of secret information. Here you have an example: consider three
pixels of an 24 bits RGB image using nine bytes of memory.

(001001111110100111001000)
(001001111100100011101001)
(001001111100100011101001)

To embed the character A which has the following bit structure 100000001,
the original bits schem will change as follows:

(001001111110100 [0] 11001000)
(0010011 [0] 110010001110100 [0])

(110010000010011111101001)
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As it can be seen only the value of three bits needs to change in order
to embed the desired character. These changes are not visible to the
naked eye. In average only a half of the LSB of a digital image needs to
be changed to embed secret data.

4 Communication using cryptography and
steganography

A method to optimize the secrecy of digital information communication
in today’s insecure environments like Internet and Mobile Networks is
to combine cryptography with steganography. By hiding the previously
encoded message, the information that is intended to be secret may be
transmitted without attracting attention. Also, this method, offers an
alternative to the classical storage of data. A user may store secret data
by encoding and embedding them in digital images to protect them from
a possible intruder [2].

Both, steganography and cryptography are intended as means to pro-
tect the confidentiality of information. However, on their own, they are
not perfect and can be decrypted and revealed. This is why most experts
would suggest the use of multiple layers of security.

The literature does not recommend replacing steganography with cryp-
tography or cryptography with steganography. It is recommended the si-
multaneous use of the two techniques. This recommendation derives from
the differences between the two techniques and the fact that they can
complete each other. Figure 2, presents briefly the different purposes that
cryptography and steganography fulfill [5].

Figure 2: Differences between steganography and cryptography [5]

Current trends, both in hardware and software technology led industry
towards the development of smaller, faster and high-performance mobile
devices, which can support a wide range of features and open source op-
erating systems [2].

A rapid growth in this area is registered by mobile hand-held devices
which are popularly called smart gadgets and they include: smart phones,
tablets, e-book readers. The Smartphone’s life-cycle has evolved drasti-
cally in recent years, having a lifetime of approximately 6 months between
generations [2].
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Among the major issues that occur in this dynamic, ever changing and
evolving environment is the fact that almost all platforms have dedicated
application. This fact is in contradiction with one of the principal char-
acteristic of digital information, namely availability. In other words, if a
sender uses an iPhone to encode and hide some information, the receiver
must also use an iPhone to unhide and decode the secret information.
And this issue also applies when using a computer [2].

In the case when the sender is restricted to using a computer whereas
the receiver has access only to a smart-phone, the secret information is
no longer available in this scenario.

A proposed solution to this situation is SmartSteg project that includes
a set of applications that use the same algorithm to encode - decode, hide -
reveal secret information (almost any kind of digital file) in digital images
independent of the type of device used. The idea is shown in figure 3.

Figure 3: SmartSteg project [9]

At this stage of the project, SmartSteg provides confidential commu-
nication between computers that run under Windows Operating System
and devices that run under Android. This means that a secret file that is
encrypted and encoded with SmartSteg using a computer can be revealed
and decrypted with SmartSteg from a device that runs under Android.
Figure 4 and 5 show the design of the application chosen for the two
versions of SmartSteg [1].

5 Conclusions

Steganography and cryptography serve the same purpose, both systems
provide secret communications. However, they differ in the methods of
attacking / breaking of the systems [6].

A cryptographic system is considered broken if an attacker manages
to decode the secret information. A steganography system is considered
broken if an attacker can detect the existence of the hidden information
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Figure 4: Design for the application that runs under Windows [1]

Figure 5: Design for the SmartSteg application running under Android [1]

or read the hidden information. Moreover, the steganography system is
considered to have failed even if an attacker only suspects the existence
of a file with hidden information or the method used to conceal the secret
information even without being able to extract it.

Steganography adds an extra layer of security to cryptography, so com-
bining the two techniques may achieve an efficient solution in terms of
systems that ensure confidential communications [6].
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Abstract

Fundamentals of fuzzy logic and an overview of its applications in
power systems are presented first. Fuzzy logic based systems with their
capability to deal with incomplete information, imprecision, and incorpo-
ration of qualitative knowledge have shown great potential for application
in electric load forecasting. The paper investigates the application of fuzzy
logic (FL) as forecasting tools for predicting short term load forecasting
(STLF).
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1 Introduction

Electric power systems are large, complex, geographically widely dis-
tributed systems and influenced by unexpected events. These facts make
it difficult to effectively deal with many power system problems through
strict mathematical approaches. Therefore, intelligent techniques such as
expert systems, artificial neural networks (ANN), genetic algorithms (GA)
and FL have emerged in recent years in power systems as a complement to
mathematical approaches and have proved to be effective when properly
coupled. As the real world power system problems may neither fit the as-
sumptions of a single technique nor be effectively solved by the strengths
and capabilities of a single technique, it is now becoming apparent that
the integration of various intelligent techniques is a very important way
forward in the next generation of intelligent systems [1].

Uncertainty and imprecision widely exist in engineering problems. The
complexity in the world generally arises from uncertainty in the form of
ambiguity. The following lists just some examples of such uncertainty and
imprecision in power systems:

• Changing power system operation conditions, such as changes in
load or generation, and changes in the topology of power systems.

• Various power system constructions, such as untransposed/transposed,
shunt compensation, and series compensation, especially the intro-
duction of new techniques - flexible AC transmission systems.
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• Many different fault/disturbance conditions, including fault incep-
tion, fault location, fault types, and fault path resistance.

• Inaccuracies caused by voltage and current transducers or SCADA
measurements/state estimations or noise introduced through elec-
tromagnetic interference.

• Uncertainty caused by electricity market or deregulation.

• Imprecise information caused by human beings involved in the plan-
ning, management, operation and control of power systems.

• Many concepts in power system problems are fuzzy in nature and
the knowledge and reasoning used by human experts to solve these
problems is approximate.

2 Fuzyy Logic applications in power sys-
tems

Analytical approaches have been used over the years for many power sys-
tem operation, planning and control problems. However, the mathemati-
cal formulations of real-world problems are derived under certain restric-
tive assumptions and even with these assumptions, the solutions of large
scale power systems problems are not trivial. On the other hand, there
are many uncertainties in various power systems problems because power
systems are large, complex, geographically widely distributed systems and
influenced by unexpected events. More recently, the deregulation of power
utilities has introduced new issues into the existing problems. These facts
make it difficult to effectively deal with many power systems problems
through strict mathematical formulations alone. Although a large num-
ber of AI techniques have been employed in power systems, fuzzy logic is
the only possible answer to a number of challenging problems [1].

For the most complex system where few numerical data exist and only
ambiguous or imprecise information may be available, fuzzy reasoning pro-
vides a way to understand system behavior by allowing us to interpolate
approximately between observed input and output situation. In recent
years, the number of publications in the area of fuzzy logic applications
to power systems has been growing rapidly [1]. The areas include:

• modelling and control e.g. power system stability control;

• pattern recognition and predication, e.g. power system security as-
sessment, fault diagnosis, load forecasting and power system protec-
tion;

• optimisation, e.g. power system planning, unit commitment and
economic dispatch etc.

3 Short-term load forecasting

Load forecasting is an important component of power system to establish
economical and reliable operations for power stations and their generating
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units. An accurate load forecasting approach used to predict load demand
is essential part of any energy management system [2].

The load forecasting can be divided into three categories: long term,
medium term and short term. Long term load forecasting (LTLF) is ap-
plicable for system and long term network planning. Mid Term Load
Forecasting (MTLF) refers to quarterly, half yearly and yearly load fore-
casting needs. Short-term load forecasting (STLF) is used to predict load
demands up to a week ahead so that the day-to-day operation of a power
system can be efficiently planned [3].

There are many techniques that could be employed for loads fore-
casting like statistical method, linear regression, FL, ANN, GA, expert
system, support vector machine, and data mining model.

Electricity load demand is influenced by many factors, such as weather,
economic and social activities, and different load. By analysis of only his-
torical load data, it is difficult to obtain accurate load demand for fore-
casting. The relation between load demand and the independent variables
is complex and it is not always possible to fit the load curve using sta-
tistical models. The numerical aspects and uncertainties of this problem
appear suitable for fuzzy methodologies [4].

4 Case Study

This paper studies the applicability of FL model on STLF. The analysis
of fuzzy model was implemented using Matlab Fuzzy Toolbox. There are
four basic elements in a fuzzy system (Figure 1) which are:

1. Fuzzification: the process of associating crisp input values with the
linguistic terms of corresponding input linguistic variables

2. Fuzzy inference engine: provides the decision making logic of the
system The fuzzy inference system is a popular computing frame-
work based on the concept of fuzzy set theory, fuzzy if-then rules,
and fuzzy reasoning.

3. Fuzzy rule base: a set of linguistic rules or conditional statements in
the form of

”IF a set of conditions IS satisfied, THEN a set of consequences are
inferred”

4. Defuzzification interface: Defuzzifies the fuzzy outputs of the fuzzy
inference machine and generates a non-fuzzy (crisp) output which
is the actual output of the fuzzy system [5]. The Center of Gravity
method (COG) is the most popular defuzzification technique and is
widely utilized in actual applications.

Our model forecasts the load for one whole day at a time. Fuzzy
logic based model is developed and presented for STLF using real data
(real load data of Romanian electric utility). Weather related variation is
certainly critical in predicting electricity demand for lead times beyond a
day-ahead.

In this case, the inputs are two previous temperature. Temperature
is important because demand of load is depending on temperature of the
day. Normally when temperature is high, the demand will also high.
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Figure 1: Basic Configuration of Fuzzy System

Figure 2: Fuzzy System Structure

There are two most used types of Fuzzy Inference System (FIS): Mam-
danis’ and Sugenos’. These two types of inference systems vary somewhat
in the way the outputs are determined. Mamdani’s fuzzy inference method
is the most commonly seen fuzzy methodology due to its simple structure
of ’min-max’ operations. Figure 2 shows the whole structure of fuzzy logic
system included input, reasoning rules and also the proposed output.

Construction of membership functions can be based on intuition, ex-
perience or probabilistic methods. The two inputs taken for STLF are
t1 and t2. As shown in figure (Figure 3) t1 and t2 is divided into five
triangular membership functions.

Figure 4 shows forecasted load (output) divided into five triangular
membership functions. Fuzzy Rule Base is the heart of the fuzzy system.
The heuristic knowledge of the forecasted is stored in terms of ”IF-THEN”
rules. It sends information to fuzzy inference system, which evaluates



Fuzzy logic applications in power systems 33

Figure 3: Memberships functions for input

Figure 4: Membership function for forecasted load

the gained information to get the load forecasted output. For the STLF
problem, a set of multiple-antecedent fuzzy rules have been established.
Some of the rules are prezented in Figure 5 as follows:

Figure 5: Rule Editor

The Surface Viewer (Figure 6) is used to display the dependency of
one of the outputs on any one or two of the inputs - that is, it generates
and plots an output surface map for the system.

The Rule Viewer (Figure 7) is based on the fuzzy inference diagram
and displays a roadmap of the whole fuzzy inference process.

Results of fuzzy logic based models are compared with the actual de-
mand of electricity for validation. To evaluate the result of fuzzy systems
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Figure 6: Surface Viewer

Figure 7: Rule viewer

performance, the following percentage error measure is employed.

error =
|actualload− forecastedload|

actualload
× 100 (4.1)

The predicted data of electrical load for one day is compared with
actual load demand and presented graphically in Figure 8.

The performance of the model is evaluated on the basis of statistical
indicator; the average error in the forecasted load in comparison with the
desired load is 2.59

5 Conclusions

Although a large number of AI techniques have been employed in power
systems, fuzzy logic is the only possible answer to a number of challenging
problems.
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Figure 8: Predicted electrical load in comparison with actual load

The growing number of publications on applications of fuzzy-set-based
approaches to power systems clearly demonstrates that fuzzy logic has
been, is, and can be used to solve power systems problems.

The fuzzy logic model for the short term electrical load forecasting is
developed and presented. The developed model is accurate and effective
for short term load forecasting.
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Inverse narcissistic numbers

Octavian Cira∗

Abstract

An n-digit number that is the sum of the nth powers of its digits is
called an n-narcissistic number. The sum of n numbers n to powers dk,
where dk ∈ {0, 1, . . . , b− 1}, n, b ∈ N, 1 < n ≤ b are the digits in base b, is
a inverse narcissistic number. In this article determine inverse narcissistic
numbers, in bases of numeration b = 2, 3, . . . , 16.

1 Introduction

An n-digit number that is the sum of the nth powers of its digits is called an
n-narcissistic number. It is also sometimes known as an Armstrong number,
perfect digital invariant [3], or plus perfect number. Hardy [7] wrote, ”There
are just four numbers, after unity, which are the sums of the cubes of their
digits: 13 + 53 + 33 = 153, 33 + 73 + 03 = 370, 33 + 73 + 13 = 371, and
43 + 03 + 73 = 407. These are odd facts, very suitable for puzzle columns and
likely to amuse amateurs, but there is nothing in them which appeals to the
mathematician”. Narcissistic numbers therefore generalize these ”unappealing”
numbers to other powers [3, page 164]. In the article [14] was determined
Narcissistic numbers in bases of numeration b = 2, b = 3,. . . b = 16. These
numbers are solutions Diophantine equations of order n

dnn−1 + dnn−2 + . . . + dn0 = dn−1b
n−1 + dn−2b

n−2 + . . . + d0 ,

where d0, d1, . . . , dn−1 ∈ {0, 1, . . . , b− 1}, n, b ∈ N, 1 < n ≤ b. These numbers
narcissistic dealt many authors, among which [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13,
18, 15, 16, 17].

The solution the equation Diophantine of the order ≤ b− 1,

ndn−1 + ndn−2 + . . . + nd0 = dn−1b
n−1 + dn−2b

n−2 + . . . + d0 (1.1)

we call the inverse narcissistic number, where n, b ∈ N, 1 < n ≤ b.
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2 Inverse Narcissistic numbers

We use the notation dn−1dn−2 . . . d0(b) for number written in the base b, dn−1 ·
bn−1 + dn−2 · bn−2 + . . . + d0 · b0. For numbers written in base b = 10 we use
classical notation.

The largest number of the form ndn−1 +ndn−2 + . . .+nd0 in base b is n ·nb−1.
The smallest number of n digits in base b is bn−1 + 1. Let the function h :
{2, 3, . . . , 16} × {2, 3, . . .} → R

h(b, n) = ln
(
n · nb−1

)
− ln

(
bn−1 + 1

)
. (2.1)

If we have h(b, n) > 0 then it follows that Diophantine equation (1.1) may
have solutions, if h(b, n) ≤ 0 then equation (1.1) has not solutions. To see the
discrete values (b, n) for which equation (1.1) may have solutions refer to figure
1.

The solutions with n = 2 digits and for b = 16, b = 15, . . . b = 2:

21 + 24 = 14(14) = 18 ,

26 + 22 = 62(11) = 68 ,

22 + 24 = 24(8) = 20 ,

21 + 23 = 13(7) = 10 ,

24 + 24 = 44(7) = 32 ,

21 + 22 = 12(4) = 6 ,

21 + 20 = 10(3) = 3 ,

21 + 21 = 11(3) = 4 ,

22 + 22 = 22(3) = 9 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 2 was
0.25s, where they analyzed a total of 1360 cases.

The solutions with n = 3 digits and for b = 16, b = 15, . . . b = 2:

31 + 30 + 34 = 104(9) = 85 ,

35 + 30 + 30 = 500(7) = 245 ,

35 + 32 + 32 = 522(7) = 261 ,

31 + 33 + 33 = 133(6) = 57 ,

33 + 34 + 33 = 343(6) = 135 ,

31 + 31 + 33 = 113(5) = 33 ,

34 + 33 + 32 = 432(5) = 117 ,

32 + 31 + 33 = 213(4) = 39 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 3 was
1.684s, where they analyzed a total of 17000 cases.
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Figure 1: The function h

The solutions with n = 4 digits and for b = 16, b = 15, . . . b = 2:

41 + 40 + 40 + 46 = 1006(16) = 4102 ,

44 + 46 + 42 + 44 = 4624(10) = 4624 ,

41 + 43 + 42 + 44 = 1324(6) = 340 ,

41 + 40 + 41 + 40 = 1010(2) = 10 ,

41 + 41 + 40 + 41 = 1101(2) = 13 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 4 was
0.593s, where they analyzed a total of 225352 cases.
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The solutions with n = 5 digits and for b = 16, b = 15, . . . b = 2:

52 + 56 + 53 + 51 + 57 = 26317(14) = 93905 ,

54 + 51 + 52 + 57 + 57 = 41277(14) = 156905 ,

56 + 57 + 57 + 57 + 57 = 67177(14) = 250005 ,

51 + 51 + 53 + 54 + 56 = 11346(11) = 16385 ,

52 + 53 + 51 + 50 + 55 = 23105(6) = 3281 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 5 was
4.898s, where they analyzed a total of 3103928 cases

The solution with n = 6 digits and for b = 16, b = 15, . . . b = 2:

65 + 66 + 61 + 64 + 60 + 67 = 561407(9) = 335671 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 6 was
84.037s, where they analyzed a total of 43912360 cases

The solutions with n = 7 digits and for b = 16, b = 15, . . . b = 2:

73 + 79 + 76 + 71 + 74 + 75 + 77 = 3961457(15) = 41314357 ,

71 + 75 + 72 + 71 + 73 + 72 + 77 = 1521327(9) = 840805 ,

71 + 75 + 72 + 74 + 71 + 71 + 77 = 1524117(9) = 842821 ,

71 + 75 + 72 + 77 + 74 + 72 + 74 = 1527424(9) = 845257 ,

71 + 72 + 76 + 76 + 76 + 74 + 73 = 1266643(8) = 355747 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 7 was
24 : 53.587 mmss, where they analyzed a total of 633596120 cases

The solutions with n = 8 digits and for b = 16, b = 15, . . . b = 2:

83 + 89 + 81 + 86 + 80 + 80 + 81 + 86 = 39160016(12) = 134742546 ,

83 + 89 + 81 + 86 + 80 + 80 + 86 + 82 = 39160062(12) = 134742602 ,

87 + 86 + 89 + 84 + 80 + 83 + 86 + 89 = 76940369(12) = 271061505 ,

83 + 85 + 81 + 86 + 81 + 88 + 83 + 85 = 35161835(9) = 17105936 ,

The time execution of program for b = 16, b = 15, . . . b = 2 and n = 8 was
24 : 53.587 mmss, where they analyzed a total of 9280593352 cases

The solutions with n = 9 digits and for b = 14, b = 13, . . . b = 2 not exist,
where they analyzed a total of 37253987498 cases.

3 Programs

Program for finding inverse Narcissistic numbers with 2 digits.

P2(b) := k ← 0
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n← 2
for j ∈ 0..b− 1

Dj ← nj

for d1 ∈ 1..b− 1
N1 ← d1 · b
for d0 ∈ 0..b− 1

M ← Dd1 + Dd0

N ← N1 + d0
if N=M

sk ← (d1 d0)
k ← k + 1

return s

Programs for finding numbers N digits are similar. Program for finding inverse
Narcissistic numbers with 3 digits.

P3(b) := k ← 0
n← 3
for j ∈ 0..b− 1

Dj ← nj

for j ∈ 2..n− 1
Bj ← bj

for d2 ∈ 1..b− 1
N2 ← d2 ·B2

for d1 ∈ 0..b− 1
N1 ← d1 · b
for d0 ∈ 0..b− 1

M ← Dd2
+ Dd1

+ Dd0

N ← N2 + N1 + d0
if N=M

sk ← (d2 d1 d0)
k ← k + 1

return s

Program call is P3(9) = [(1 0 4)], where 31 + 30 + 34 = 104(9) = 85.
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A study on classification algorithms for

imbalanced datasets

Carmen Ţerei∗ Marius Tomescu †

Abstract

Any data set that exhibits an unequal distribution between its classes
can be considered imbalanced. Imbalance severely biases the learning pro-
cess and badly affects the performances of the mining algorithms, because
often the classiffier has not enough samples of the minority class for proper
training. In the current paper we are making a comparative study on some
of the most popular classification algorithms for imbalanced datasets.

Mathematics Subject Classification: 68T05

Keywords: decision trees, support vector machines, undersampling, oversam-

pling, cost-sensitive learning

1 Introduction

Technically speaking, any data set that exhibits an unequal distribution
between its classes can be considered imbalanced. However, the common
understanding in the community is that imbalanced data correspond to
data sets exhibiting significant, and in some cases extreme, imbalances.
Specifically, this form of imbalance is referred to as a between-class imbal-
ance; not uncommon are between-class imbalances on the order of 100:1,
1,000:1, and 10,000:1, where in each case, one class severely outrepresents
another[1]. Imbalances of this form are commonly referred to as intrinsic,
i.e., the imbalance is a direct result of the nature of the dataspace.

However, imbalanced data are not solely restricted to the intrinsic va-
riety. Variable factors such as time and storage also give rise to data sets
that are imbalanced. Imbalances of this type are considered extrinsic, i.e.,
the imbalance is not directly related to the nature of the dataspace. Ex-
trinsic imbalances are equally as interesting as their intrinsic counterparts
since it may very well occur that the dataspace from which an extrinsic
imbalanced data set is attained may not be imbalanced at all.

In addition to intrinsic and extrinsic imbalance, it is important to un-
derstand the difference between relative imbalance and imbalance due to
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rare instances (or absolute rarity). Imbalance due to rare instances is
representative in domains where minority class examples are very limited,
i.e., where the target concept is rare. In this situation, the lack of repre-
sentative data will make learning difficult regardless of the between-class
imbalance.

This, in fact, is the result of another form of imbalance, a within-class
imbalance, which concerns itself with the distribution of representative
data for subconcepts within a class.

The existence of within-class imbalances is closely intertwined with the
problem of small disjuncts, which has been shown to greatly depreciate
classification performance. The problem of small disjuncts can be under-
stood as follows: a classifier will attempt to learn a concept by creating
multiple disjunct rules that describe the main concept. In the case of
homogeneous concepts, the classifier will generally create large disjuncts,
i.e., rules that cover a large portion (cluster) of examples pertaining to
the main concept.

In most cases, the imbalanced class problem is associated to binary
classification, but the multi-class problem often occurs and, since there
can be several minority classes, it is more difficult to solve [2][3].

Imbalance severely biases the learning process and badly affects the
performances of the mining algorithms, because often the classifier has not
enough samples of the minority class for proper training. The minority
class usually represents the most important concept to be learned, and it
is difficult to identify it since it might be associated with exceptional and
significant cases [4], or because the data acquisition of these examples is
costly [5].

2 Classification algorithms

A large number of approaches have been proposed to deal with the class
imbalance problem. These approaches can be categorized into two groups:
the internal approaches that create new algorithms or modify existing
ones to take the class-imbalance problem into consideration [6, 7, 8] and
external approaches that preprocess the data in order to diminish the
effect of their class imbalance.

Furthermore, cost-sensitive learning solutions incorporating both the
data (external) and algorithmic level (internal) approaches assume higher
misclassification costs for samples in the minority class and seek to mini-
mize the high cost errors [9, 10, 11, 12].

There are more approaches, but they are not subject of the current
paper.

3 Internal approaches

1. Decision trees
Decision trees use simple knowledge representation to classify examples

into a finite number of classes. In a typical setting, the tree nodes represent
the attributes, the edges represent the possible values for a particular
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attribute, and the leaves are assigned with class labels. Classifying a test
sample is straightforward once a decision tree has been constructed. An
object is classified by following paths from the root node through the tree
to a leaf, taking the edges corresponding to the values of attributes.

C4.5 is a decision tree generating algorithm. It induces classification
rules in the form of decision trees from a set of given examples. The
decision tree is constructed top-down using the normalized information
gain (difference in entropy) that results from choosing an attribute for
splitting the data. The attribute with the highest normalized information
gain is chosen to make the decision. The C4.5 algorithm then recurs on
the smaller sublists.

2. Support vector machines
Support vector machines (SVM) belong to a family of generalized lin-

ear models which achieves a classification model based on the linear com-
bination of independent variables. The mapping function in SVM can
be either a classification function or a regression function. For classifica-
tion, nonlinear kernel functions are often used to transform the input data
(inherently representing highly complex nonlinear relationships) to a high
dimensional feature space in which the input data becomes more separable
(i.e., linearly separable) compared to the original input space. Then, the
maximum-margin hyperplanes are constructed to optimally separate the
classes in the training data. The assumption is that the larger the mar-
gin or distance between these hyperplanes the better the generalization
performance of the classifier.

4 External approaches

The imbalanced data problem is quite usual in machine learning and data
mining applications as it appears in many real-world prediction tasks.
However, the techniques and concept of balancing the data prior to model
building is relatively new to many information systems researchers. A
wide variety of balancing techniques have been applied to data sets in
many areas such as medical diagnosis, classifiers for database marketing,
property refinance prediction, among others.

Preprocessing imbalanced datasets: resampling techniques
Sampling strategies are often used to overcome the class imbalance

problem.
It was empirically proved that applying a preprocessing step in or-

der to balance the class distribution is usually an useful solution [13][14].
Furthermore, the main advantage of these techniques is that they are
independent of the underlying classifier.

Resampling techniques can be categorized into three groups or families:
1. Undersampling methods, which create a subset of the original

dataset by eliminating instances (usually majority class instances).
2. Oversampling methods, which create a superset of the original

dataset by replicating some instances or creating new instances from ex-
isting ones.

3. Hybrids methods, which combine both sampling approaches from
above.
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Synthetic minority over-sampling technique (SMOTE). This heuristic,
originally developed by Chawla et al. (2002), generates synthetic minority
examples to be added to the original dataset. For each minority example,
its k nearest neighbors of the same class are found. Some of these near-
est neighbors are then randomly selected according to the over-sampling
rate. A new synthetic example is generated along the line between the
minority example and every one of its selected nearest neighbors. This
process is repeated until the number of examples in all classes is roughly
equal to each other. Instead of replicating the existing instances, SMOTE
generates new synthetic minority class instances by interpolating between
several minority class examples that lie close together. It allows the clas-
sifiers to carve broader decision regions, which leads to more coverage of
the minority class.

5 Cost-sensitive learning

Instead of changing class distribution, applying cost in decision making
is another way to improve the performance of a classifier. Cost-sensitive
learning methods try to maximize a loss function associated with a data
set. These learning methods are motivated by finding that most real-world
applications do not have uniform costs for misclassifications.

Cost-sensitive learning takes into account the variable cost of a mis-
classification with respect to the different classes. In this case, a cost
matrix codifies the penalties C(i, j) of classifying examples of one class i
as a different one j.

Weighted LPSVM (wLPSVM) is a solution to the class imbalance
problem for LPSVM. It can be seen as a example of the weighting method.
The class imbalance problem for LPSVM is mainly caused by the imbal-
ance force of the two-class training error. The idea of wLPSVM is: bal-
ancing the training error from two classes to obtain a separating plane
learning that is robust to the class imbalance. This training error balanc-
ing is achieved by assigning smaller weight to the training errors from the
majority class while assigning larger weight to that of the minority class.

The cost-sensitive C4.5 decision tree (C4.5CS) is a method to induce
cost-sensitive trees that seeks to minimize the number of high cost errors
and, as a consequence of that, leads to minimization of the total misclas-
sification costs in most cases. The method changes the class distribution
such that the tree induced is in favor of the class with high weight/cost
and is less likely to commit errors with high cost. C4.5CS modifies the
weight of an instance proportional to the cost of misclassifying the class
to which the instance belonged, leaving the sum of all training instance
weights still equal to N . Let C(j) be the cost of misclassifying a class j
instance; the weight of a class j instance can be computed as

w(j) = C(j)
N∑

i C(i)Ni

such that the sum of all instance weights is
∑

j w(j)Nj = N .
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6 A comparison of the classification al-
gorithms

A study on several datasets from various fields and different imbalance
ratios on which were applied preprocessing methods and cost-sensitive
learning algorithms has lead to some useful conclusions.

a. Study on the preprocessing methods
Some of the most representative techniques were compared, devel-

oping a ranking according to the performance obtained in each case.
The set of methods is composed by the following techniques: SMOTE,
SMOTE+ENN, Borderline-SMOTE (Border-SMOTE), ADASYN, Safe-
Level-SMOTE (SL-SMOTE), SPIDER2 and DBSMOTE. The interpola-
tions that are computed to generate new synthetic data were made con-
sidering the 5-nearest neighbors of minority class instances using the eu-
clidean distance.

The conclusion was that SMOTE+ENN and SMOTE obtained the
highest performance, because of some possible reasons. The first one is
related to the addition of significant information within the minority class
examples by including new synthetic examples. The second reason is that
the more sophisticated the technique is, the less general it becomes for
the high number of benchmark problems selected for our study.

b. Study on the cost-sensitive learning algorithms
Three different approaches were used, namely the CS-Weighted, Meta-

Cost, and the CostSensitive Classifier (CS-Classifier) from the Weka en-
vironment. In the first case, the base classifiers were modified usually by
weighting the instances of the dataset to take into account the a priori
probabilities, according to the number of samples in each class. In the
two latter cases, it was used an input cost-matrix defining C(+,−) = IR
and C(−,+) = 1.

It has been appreciated that the CS-Weighted approach achieves the
highest rank overall. The MetaCost method obtains also a good average
for C4.5 and kNN, but it is outperformed by the CS-Classifier when SVM
is used.

The good behavior shown by introducing weights to the training exam-
ples can be explained by its simplicity, because the algorithm procedure
is maintained and is adapted to the imbalanced situation. Therefore,
it works similarly to an oversampling approach but without adding new
samples and complexity to the problem itself. On the other hand, the
MetaCost method follows a similar aim, therefore obtaining high quality
results.

7 Conclusions

In this paper were compared some classification algorithms for imbalanced
datasets. The approaches which were studied were the datasets prepro-
cessing methods and cost-sensitive learning algorithms. The aim was to
emphasize which ones lead to the best data classification results.
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Abstract

The datasets that exhibit an unequal distribution between their classes
can be considered imbalanced. Imbalance severely biases the learning pro-
cess and badly affects the performances of the mining algorithms. Con-
ventional evaluation practice of using singular assessment criteria, such
as the overall accuracy or error rate, does not provide adequate infor-
mation in the case of imbalanced learning. In the current paper we are
presenting some of the metrics which are dedicated for evaluating the data
classification for imbalanced datasets.
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1 Introduction

As the research community continues to develop a greater number of intri-
cate and promising imbalanced learning algorithms, it becomes a must to
have standardized evaluation metrics to properly assess the effectiveness
of such algorithms.

The measures of the quality of classification are built from a confusion
matrix, which records correctly and incorrectly recognized examples for
each class. The most used empirical measure, accuracy, does not distin-
guish between the number of correct labels of different classes, which in
the ambit of imbalanced problems may lead to erroneous conclusions. For
example a classifier that obtains an accuracy of 90% in a data-set with
a 90% of negative instances, might not be accurate if it does not cover
correctly any positive class instance.

Positive prediction Negative prediction

Positive class True Positive (TP) False negative (FN)
Negative class False Positive (FP) True negative (TN)
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Because of this, instead of using accuracy, more appropriate metrics
in this situation are considered. Two common measures, sensitivity and
specificity, approximate the probability of the positive (negative) label
being true. In other words, they assess the effectiveness of the algorithm
on a single class.

2 Numerical metrics

Evaluation measures have a crucial role in classifier analysis and design.
Accuracy, Recall, Precision, F-measure, kappa, ACU and some other new
proposed measures like Informedness and Markedness are examples of
different evaluation measures.

Depending on the problem and the field of application one measure
could be more suitable than another. While in the behavioral sciences,
Specificity and Sensitivity are commonly used, in the medical sciences,
ROC analysis is a standard for evaluation. On the other hand, in the In-
formation Retrieval community and fraud detection, Recall, Precision and
F-measure are considered appropriate measures for testing effectiveness.

In a learning design strategy, the best rule for the specific application
will be the one that get the optimal performance for the chosen measure.
This problem is particularly important in those applications where the
instances of a class (the majority one) heavily out- number the instances of
the other (the minority) class and it is costly to misclassify samples from
the minority class. For example in information retrieval, nontechnical
losses in power utilities or medical diagnosis.

For example, in a decision tree the pruning criterion is usually the
classification error, which can remove branches related with the minority
class. In back- propagation neural networks, the expected gradient vector
length is proportional to the class size, and so the gradient vector is domi-
nated by the prevalent class and consequently the weights are determined
by this class.

SVMs are thought to be more robust to the class imbalance problem
since they use only a few support vectors to calculate region boundaries.
However, in a two class problem, the boundaries are determined by the
prevalent class, since the algorithm tries to find the largest margin and the
minimum error. A different approach is taken in one-class learning, for
example one class SVM, where the model is created based on the samples
of only one of the classes. In [21] the optimality of one-class SVMs over
two-class SVM classifiers is demonstrated for some important imbalanced
problems.

In most of the approaches that deal with an imbalanced problem, the
idea is to adapt the classifiers that have good Accuracy in balanced do-
mains. A variety of ways of doing this have been proposed: changing class
distributions, incorporating costs3 in decision making, and using alterna-
tive performance metrics instead of Accuracy in the learning process with
the standard algorithms.

The evaluation criteria is a key factor in assessing the classification
performance and guiding the classifier modeling. In a two-class problem,
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the confusion matrix records the results of correctly and incorrectly rec-
ognized examples of each class.

Traditionally, the accuracy rate has been the most commonly used em-
pirical measure. However, in the framework of imbalanced datasets, accu-
racy is no longer a proper measure, since it does not distinguish between
the number of correctly classified examples of different classes. Hence, it
may lead to erroneous conclusions, i.e., a classifier achieving an accuracy
of 90% in a dataset with an IR value of 9 is not accurate if it classifies all
examples as negatives.

Acc =
TP + TN

TP + FN + FP + TN
In imbalanced domains, the evaluation of the classifiers’ performance

must be carried out using specific metrics in order to take into account
the class distribution. Concretely, we can obtain four metrics to mea-
sure the classification performance of both, positive and negative, classes
independently:

• True positive rate: TPrate = TP
TP+FN

is the percentage of positive
instances correctly classified.

• True negative rate: TNrate = TN
FP+TN

is the percentage of negative
instances correctly classified.

• False positive rate: FPrate = FP
FP+TN

is the percentage of negative
instances misclassified.

• False negative rate: FNrate = FN
TP+FN

is the percentage of positive
instances misclassified.

Other metric of interest to be stressed in this area is the geometric
mean of the true rates, which can be defined as:

GM =

√
TP

TP + FN
· TN

FP + TN
This metric attempts to maximize the accuracy on each of the two

classes with a good balance, being a performance metric that correlates
both objectives. However, due to this symmetric nature of the distribution
of the geometric mean over TPrate (sensitivity) and the TNrate (speci-
ficity), it is hard to contrast different models according to their precision
on each class.

Another significant performance metric that is commonly used is the
F-measure:

Fm =
(1 + β2)(PPV · TPrate)

β2PPV + TPrate

PPV =
TP

TP + TP + FP
According to the previous comments, some authors try to propose

several measures for imbalanced domains in order to be able to obtain as
much information as possible about the contribution of each class to the
final performance and to take into account the IR of the dataset as an
indication of its difficulty.

For example, in [10,14] the Adjusted G-mean is proposed. This mea-
sure is designed towards obtaining the highest sensitivity (TPrate) with-
out decreasing too much the specificity (TNrate). This fact is measured
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with respect to the original model, i.e. the original classifier without ad-
dressing the class imbalance problem.

AGM =
GM + TNrate · (FP + TN)

1 + FP + TN
; If TPrate > 0

AGM = 0; If TPrate = 0
Additionally, in [54] the authors presented a simple performance metric

called Dominance, which is aimed to point out the dominance or preva-
lence relationship between the positive class and the negative class, in the
range [−1,+1]. Furthermore, it can be used as a visual tool to analyze
the behavior of a classifier on a 2-D space from the join perspective of
global precision (Y-axis) and dominance (X-axis).

Dom = TPrate − TNrate
The same authors, using the previous concept of dominance, Index

of Balanced Accuracy (IBA). IBA weights a performance measure, that
aims to make it more sensitive for imbalanced domains. The weighting
factor favors those results with moderately better classification rates on
the minority class. IBA is formulated as follows:

IBAα(M) = (1 + α ·Dom)M
where (1 + α · Dom) is the weighting factor and M represents a per-

formance metric. The objective is to moderately favor the classification
models with higher prediction rate on the minority class (without under-
estimating the relevance of the majority class) by means of a weighted
function of any plain performance evaluation measure.

3 Graphical metrics

A well-known approach to unify these measures and to produce an eval-
uation criteria is to use the Receiver Operating Characteristic (ROC)
graphic. This graphic allows the visualization of the trade-off between
the benefits (TPrate) and costs (FPrate), as it evidences that any classi-
fier cannot increase the number of true positives without also increasing
the false positives.

ROC curves, graph true positive rates on the y-axis vs. the false pos-
itive rates on the x-axis. The resulting curve illustrates the trade-off be-
tween detection rate and false alarm rate. The ROC curve illustrates the
performance of a classifier across the complete range of possible decision
thresholds, and accordingly does not assume any particular misclassifica-
tion costs or class prior probabilities.

For a single numeric measure, the area under the ROC curve (AUC)
is widely used, providing a general idea of the predictive potential of the
classifier. A higher AUC is better, as it indicates that the classifier, across
the entire possible range of decision thresholds, has a higher true positive
rate. The AUC is the performance metric used for this study. Provost
and Fawcett give an extensive overview of ROC curves and their potential
use for creating optimal classifiers.

The Area Under the ROC Curve (AUC)corresponds to the probability
of correctly identifying which one of the two stimuli is noise and which one
is signal plus noise. The AUC provides a single measure of a classifier’s
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performance for evaluating which model is better on average. The AUC
measure is computed just by obtaining the area of the graphic:

AUC =
1 + TPrate + FPrate

2
According to the authors, the main advantage of this type of methods

resides in their ability to depict the trade-offs between evaluation aspects
in a multidimensional space rather than reducing these aspects to an arbi-
trarily chosen (and often biased) single scalar measure. In particular, they
present a review of several representation mechanisms emphasizing the
best scenario for their use; for example, in imbalanced domains, when we
are interested in the positive class, it is recommended the use of precision-
recall graphs [36]. Furthermore, the expected cost or profit of each model
might be analyzed using cost curves, lift and ROI graphs.

4 Conclusions

In this paper we presented some of the techiques which are adapted for
evaluating the quality of the algorithms for the classification of imbalanced
datasets. There are several numerical metrics and also some graphical
metrics.
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Abstract

Financial statements are essential on capital investment decision, es-
pecially in the new context of a globalized world, increasing international
capital market listing, or amplified commercial relation among national
economies, and the promising international process of accounting conver-
gence. Our study aim to analyze the closeness of different IFRS adoption
strategies, by creating four clusters, based on the level of IFRS adoption
referring to consolidated financial statements, individual financial state-
ments and simplified financial statements accounting regulation. The re-
sults reveal small differences between the clusters determined, leading to
a promising future of the recent IASB projects of continuous improvement
of existing standards and for new standards.

Jel classification: M21, M41.

Keywords: IAS/IFRS, accounting convergence, clustering, enforcement, glob-
alization.

1 Introduction
Declared objectives of presenting financial position, financial performance and
modification in financial position within financial statements has raised vivid
debate among the researchers, especially in the past decades characterized by a
strong will of reducing international accounting differences that affected seriously
decision-making process. Most recent ambitious project of international account-
ing convergence, conducted by IASB in cooperation with FASB, supported by
international professional organizations and local government institutions, has
underlined not just the opportunity of improving financial information quality,
but also has shown chances of cost reduction at firm-level and country-level as
well.

Though, the process of international accounting convergence seems to take a
longer time than expected, the signals are positive as nowadays there are more
than 100 jurisdictions that decided to adopt IFRS opting for different strategies
well known at international level. Once the capital markets have opened on inter-
national listing and foreign investments have increased exponentially, especially
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in the case of the emerging and economies in transition, the incentives offered for
IFRS adoption has determined investors and international financial institutions
to make pressure for IFRS adoption, against the political factor option (Burca
& Cilan, 2013).

Unfortunately, even within countries with similar accounting systems, persist
accounting differences caused by various factors describing the environment in
all its aspects. The problem of overt and covert options permitted by IFRSs
and the ambiguity on defining and utilizing various conceptual terms has led a
more relevant financial information than the previous period of local GAAPs,
but hasn’t solved completely the problem of opportune accounting strategies
(Nobes, 2008; Doupnik & Perrera, 2012).

On this article we attempt to make a classification of jurisdictions worldwide
considering different strategies of IFRS adoption used, as the adoption described
a gradual transition from local GAAP to IFRS. The global positive perception
for IFRS adoption is valid, being reiterated by all accounting regulators. But
there still persist reluctance on implementing IFRS for all financial statements
for most of the jurisdictions. We subscribe to Christensen (2012) opinion who
sustain that a cause may be the inconsistencies around benefits and costs of
IFRS adoption revealed by numerous recent studies.

2 Literature review
The step towards a unique set of international core standards has been promoted
fervently by capital market actors, as the comparability and value relevance of
the financial information is essential investment decision. The option for IFRS
adoption is recommended in the light of the results of recent studies that envisage
a more accurate reporting framework drawn by IFRSs, that improve significantly
the quality of financial information (Daske et. al., 2008; Ramana & Sletten,
2009; Chen et. al., 2010; Barth et. al., 2012; Daske et. al., 2013), leading to
macroeconomic and microeconomic positive effects (Daske et. al., 2013; Banker
et. al., 2014; Biddle et. al., 2013).

Even if there were outlined serious compatibility issues between local ac-
counting system and IFRS provisions, recent studies revealed that fundamental
in the transition process to IFRS regulation is the power of will of change. More-
over, the discussion around the overt and covert accounting policy options seems
to be more complex, underlining the trade-off between the preparers and the user
of the financial information. Essential on this debate is the power of intention
when designing the accounting policies (Fields et. al., 2001; Jianu, 2012).

It is less important what financial statement depict a faithful representation
of the economic reality, as this can be easily set by the financial system, in the
limits of efficiency (Ball & Shivakumar, 2005; Nobes & Parker, 2008). Important
is that the mechanism and tools of financial reporting to disclose any doubt of
accounting manipulation. Here the role of the institutional framework of a juris-
diction, and complementary a consolidated mechanism of corporate governance,
have to bring their contribution to the proper enforcement of the new accounting
regulation (Samaresekera et. al., 2012; Christensen et. al., 2013).

Most of negative perception translated in reluctance to IFRS adoption of
some firms was mainly determined by the lack of prior studies, or insignificant
reporting incentives provided by an emerging capital market. On this context it
is essential that accounting standard-setters and local enforcement institutions
to pay attention to the role of reporting incentives (especially the market-driven
ones), cause the quality of the accounting standards does not necessary traduce
into qualitative financial reporting (Burgstahler et. al.2006; Jayaraman & Verdi,
2014).

The option for IFRS standards, but not for US GAAP, is not only a matter
of a economic cost-benefits analysis, but also, a matter of politics of accounting
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standards. Ramanna (2013) has revealed different strategies of harmonization of
accounting regulation with IFRS provisions, explaining these strategies by two
factors: country’s potential influence on IASB decisions and the proximity of
the existing accounting system to the ones of the political powers at the IASB.
Nobes (2011) identify six ways of IFRS implementation:

⇒ full adoption of IFRS, when the jurisdiction use the most recent versions
of IFRSs, without passing the content of the standards though an endorse-
ment process;

⇒ insertion of IFRSs into law, which differs from first way by delaying the
date of use of the new or revised standards;

⇒ endorsing IFRS, which involves detailed scrutiny of all IFRS standards,
leading many times to several carve-outs, altering the content quality of
the original IFRS standard;

⇒ full convergence with IFRS, with expressed intention of full compliance,
which imply IFRS insertion into national regulation with several amend-
ments leading to textual changes, several carve-outs, and early adoption
banning;

⇒ adapting IFRS, is the case of classic accounting harmonization, when a
jurisdiction use IFRSs as a source of regulation;

⇒ allowing IFRS, is the way jurisdictions preserve their power of accounting
regulation for a restricted category of companies, as most of jurisdiction
do currently when discussing potential IFRS for SMEs adoption.

IFRS are currently used in the consolidated financial statements in IFRS
of over 100 jurisdictions .Adopting IFRS takes many forms. While some states
choose to implement the full incorporation of IFRS into national legislation
(Trinidad and Tobago -1988 , Bosnia - Herzegovina 1995 Vietnam - 2002 Ba-
hamas 2007); or have successfully completed harmonization projects of local ac-
counting standards with the international standards ( China - 2006-2010 Algeria
, India , Indonesia - 2012) most jurisdictions choose adopting IFRS in its original
form , by limiting the applying sphere only to consolidated financial statements
of listed companies . But currently, there are also jurisdictions (Cameroon ,
Congo , Senegal - 2014 , Bolivia , Colombia -2015, US- 2016 , Saudi Arabia -
2017) that did not appeal to the adoption of IFRS (around 15% of jurisdictions
worldwide) but many of them have expressed their desire to conduct a future
project for implementing IFRS .

3 Methodological research
The aim of the study is to classify different jurisdictions in order to observe a
trend on the next future regarding IFRS adoption worldwide. The sample used
consist of 57 jurisdiction, which can be split by region as the chart below show.

The information regarding regulation of financial reporting according to
IFRS provisions are collected from multiple sources reminding here PWC (2013)
study ,,IFRS adoption by country”, Deloitte website dedicated for IFRS con-
cerns and IASB website relating jurisdictions profiles.

Making abstraction of the endorsement process used in case of some jurisdic-
tion, as is the case of EU countries, the jurisdictions will be classified based on
a score variable designed to describe the strategies of IFRS adoption mentioned
above. The sample countries are first analyzed based on the treatment for IFRS
use for the following groups of companies: are first classified in three groups:
listed foreign companies, listed domestic companies and unlisted companies and
SMEs. The scor variable is calculated considering different multiples to be used
for the type of companies, the level of IFRS use on consolidated and statutory
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financial statement as well is order to underline the reluctance of most devel-
oped jurisdictions to apply IFRS for all financial statements. For the treatment
of prohibiting IFRS we consider the value 1, as for the treatment of permitting
IFRS we use 2 and for the treatment of mandatory use of IFRS (value m) there
is allocated value 3.

The classification is realized using the k-means cluster analysis technique
which have as variables the scores for each type of financial statement. Leuz
(2010) has achieved to classify 49 countries into a small number of clusters con-
sidering a suite of factors concerning institutional characteristics, such as legal
origin, disclosure requirements rule of law etc. Nanda & Wysocki (2011) study
the causal relation between societal trust and firms’ voluntary and regulated
financial reporting and disclosure quality. Later Nanda & Wysocki (2013) used
the same method of clustering, this time to analyze the relation between societal
trust and firms’ financial transparency, and how firms’ external capital demand
affects this relation.

4 Discussion and results
In our analysis we will consider the number of necessary clusters to be identi-
fied by analyzing graphically the positioning of all jurisdictions on a 3D graph
describing all three above mentioned scores to be used (Field, 2005). The basic
rationale of our approach is that all jurisdictions included on our sample different
more or less on the level IFRS is allowed or even mandatory to use on preparing
financial statements. The evidence reveal a gradual IFRS adoption showing that
on first stage the consolidated financial statements only are prepared according
to IFRS.

Representation by type of financial statements regulation

On the second stage, the national regulators decide the extent of IFRS use
to preparation of individual financial statements. This step depends strongly on
how strong is the relation between accounting policies and fiscal rules, as the
continental accounting systems are well known for fiscal economies obtained with
the condition to comply with a prescribed formula of accounting registration of
different types of economic transactions (Lamb et. al.,1998).

The last stage is supposed to make the transition to IFRS of the small and
medium enterprises, too. On this direction IASB has designed a simplified set
of accounting standards, meant to respond properly to the lower demand of
financial information implied. This way they have published the IFRS for SMEs
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in order to eliminate the duality of the national accounting system of jurisdictions
that have already decided IFRS adoption for listed companies. But, till now
there is long debate around the opportunity of this decision. For instance, the EU
community has given great attention to this subject, even revising the European
directives regulating accounting treatments.

Representation by type of company group

We have represented graphically the scores reflecting level of IFRS adoption
by type of financial statements regulation and by type of company analyzed as
well. The general conclusion is that jurisdictions expressed their will to adopt
IFRS, but just for consolidated financial accounts as they are not used on fiscal
purpose, explained also by the negative strong correlation of about -0.288.

Indeed, there is seen on last years a more clear direction towards extent of
IFRS use to individual financial statements, too. The statistics reveal a relatively
high level of IFRS adoption, but with higher variation within the sample, but
the focus for mandatory IFRS adoption still continue to be in case of listed
companies. Unlisted companies are rather permitted to use IFRS on statutory
annual accounts, but just as a second set of financial statements which lead to
higher costs of preparation implied by the reconciliation costs registered. This
way, the voluntary adoption is really low, even if the literature confirmed higher
benefits of IFRS voluntary adoption than in case of mandatory IFRS adoption.

But this trend can be mainly justified by the pressure exerted by investors
and international financial institutions in case of developed countries, as they
already have a solid knowledge in financial accounting regulation, with a strong
financial education provided by well know universities, and a powerful account-
ing research tradition. But, jurisdictions perception on IFRS adoption depends
especially on the ratio between similarities and differences between the local
GAAP and IFRS standards.

Contrary, the underdeveloped economies and economies in transition, the
solution of fully IFRS adoption is more reliable as this would lead to significant
government cost reduction through the deregulation process. Here potential
issues can raise around the quality of training the professional on the IFRS hot
topics, such countries being forced more or less to access consulting services
provided by accounting and auditing international offices, such as the Big4

The same graph illustrate a persistent visible reluctance of jurisdictions to-
wards IFRSs for SMEs adoption. But this reluctance is not valid only for the
political factor, being shown by managers of SMEs as well. In the case of SMEs
there is more visible the cultural component of managers behavior regarding
financial reporting strategies. If the fiscal factor remain a constant determinant
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of accounting differences, as in the case of individual financial statements, there
is evidence of a stronger correlation between score of IFRS for SMEs adoption1

and level of uncertainty avoidance perceived.
Proceeding to clustering the sample, we have obtained four slightly equal

clusters. They are different, especially based on the variations of treatment
regarding IFRS adoption for consolidated accounts preparation and treatment
regarding IFRS adoption for simplified accounts preparation:

⇒ the first cluster is dominated by the highest level of IFRS adoption, in
case of all types of companies and all levels of financial reporting. This
can be explained by the emergent capital markets, except the case of New
Zeeland which follow the way of IFRS cause of its common law origins;

⇒ the second cluster group jurisdictions which prefer IFRS adoption espe-
cially for the foreign listed companies, in order to support potential foreign
investor, leading to a growing market capitalization;

⇒ the third cluster is mainly comprised by EU community jurisdictions,
which are affected by the IAS regulation (1606/2002) which obliged listed
companies to report under the IFRS provisions the consolidated accounts.;

⇒ the forth cluster contains countries that rather permit IFRS use than de-
cide for mandatory adoption in most cases, especially in the case of unlisted
companies and SMEs

There are not major differences between the four clusters, which means that
all jurisdictions tend to consider IFRS adoption as a viable scenario for future

1Even if we refer to IFRS for SMEs adoption as the scenario in case of SMEs, there are
cases which still use complete version of IFRSs for SMEs, probably till the debate around the
opportunity for IFRS for SMEs adoption will end in favor;
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accounting regulation. The differences consist of the timeframe of the transi-
tion process, the date of implementation, the differences of level of local GAAP
harmonization with IFRS etc. All the clusters describe one general trend of
IFRS adoption which predict a long way to fully IFRS adoption. We tend to
even think that this objective is impossible. But the interest for IFRS philosophy
and rationale still remain high among the regulators. Thus, even if the process of
international accounting convergence will not find a reliable solution for interna-
tional accounting systems uniformity, the process of international harmonization
will continue.

5 Conclusions
It is obvious that IFRS represent the global solution for a new era of an in-
ternational accounting language. Just that the uncertainty for new of most
jurisdictions is visible and the more flexible accounting philosophy promoted by
IASB means the professionals rationale to become the center of the entire fi-
nancial reporting process. Unfortunately, not all the time the preparers of the
annual accounts prove to be honest and sincere, often making use of various cre-
ative accounting techniques, forced by economic context and shared life values.
Adding to this reality the fact that, on an international capital market and a
globalized economy, the international financial analyses are of high importance
on decision-making, the financial information is disclosed based on different ac-
counting regulations, the quality of financial information decrease drastically.

If the contracting theory can’t be solved by specific regulation, just through
an open negotiation language establishing the incentives area, the accounting
differences were significantly reduced by the international accounting harmo-
nization process, and after by the more ambitious international accounting con-
vergence efforts.

The evidence confirm as a general accepted solution worldwide the IFRS
adoption on a gradual process of transition. Unfortunately, the reality reveal
just a superficial success of the accounting convergence success as there is long
way till all jurisdictions will decide to extend IFRS use not just in purpose of
preparing the consolidated accounts. This is because of the reluctance of some



SClusters describing IFRS adoption stage 61

players who are still not sure about the impact of IFRS quality on the economy
and on the profound reform of the society.

We have revealed that the jurisdiction, even if differ based on the strategies
of IFRS adoption, eventually have built a positive perception about IFRS quality
and the necessity of international accounting practices comparability.

The complexity of the accounting convergence process explain the long time-
frame necessary for full compliance with IFRS at a generalized level. The odds
will be in favor of IASB project till the political factor will support IASB work.
Otherwise, the limited legitimacy of IASB will not be enough for a proper IFRS
implementation. We underline the fact that IFRS accounting quality does not
transpose mandatory into qualitative accounting practices. There is necessary
a continuous relation of communication between managers, shareholders and
stakeholders as well, in order to build the bases of a confident business model
which can be financed at a lower cost of capital, registering high rate of returns.

It is obvious that nobody expect that IFRS provisions will solve entire prob-
lems raise along the financial reporting supply chain. That is why preparers and
users as well have to understand that their contribution to financial disclosures
optimization is essential, especially through the voluntary financial reporting
component.
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Series representations for random distribution

fields

Păstorel Gaşpar∗ Lorena Popa †

Abstract

In [3] we started a study of multivariate second order random distribu-
tion fields (m.s.o.r.d.f). This note is devoted to ordinary, modular and ten-
sor series representations and some relation between these for m.s.o.r.d.f.
Finally a connection of series representation of m.s.o.r.d.f. with the cor-
relation distribution is given.

Mathematics Subject Classification:
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1 Introduction

Series and integral representations play an important sole in the study of
stochastic processes and random fields. Integral representations appear
often in the case of stationary random fields (see [6] and the literature
cited there). In [3] the authors extended the study of infinite dimensional
random fields to the setting of random distribution fields and stochastic
mappings, while [4] is devoted to the stationarity and stationarily cross
correlatedness including integral representations.
Series representations for stochastic processes appeared first in [7] and [8]
and then in [9] and [1]. This study was continued in [5] and [6]. In this
paper we consider the three types of series representations presented in
[6, Sec. 4.6] in the extended framework of [3] and [4]. Hence, we may use
to a significant extent concepts and notations from [6], [3] and [4].
So (Ω,A , ℘) will be a probability space and H a separable Hilbert space,
for which B(H) and C1(H) mean the Banach algebra of all continuous
linear operators on H, respectively the ideal of trace class operators from
B(H). The space L2

0(℘,H) of second order H-valued random variables on
Ω of zero mean will be denoted by H . It’s elements will be also called
multivariate second order random variables, or briefly m.s.o.r.v. It will be
endowed (see [6, Sec. 1.3]) with a normal Hilbert B(H)-module structure,
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having a C1(H)-valued gramian

[h, k]H =

∫
Ω

h(ω)⊗ k(ω)d℘(ω), h, k ∈H ,

where ⊗ is the tensor product in the sense of Schatten, while (h, k) :=
tr[h, k]H , h, k ∈ H , is the natural scalar product making H a Hilbert
space. As such it can be identified (see also [6, Sec. 2.1]) with the Hilbert
space tensor product H ⊗L2

0(℘), where L2
0(℘) : = L2

0(℘,C). The norm on
H will be consequently expressed by

‖h‖H : = (h, h)
1/2
H = ‖[h, h]H ‖1/2C1(H), h ∈H .

If we intent to consider the m.s.o. stochastic processes not only as
H -valued functions on Rd, but more generally as H -valued distributions
on Rd, then we consider D(Rd) = Dd, the space of test functions in the
theory of distributions instead of the time parameter set of the field. Such
an object will be called m.s.o. random distribution field (m.s.o.r.d.f.).

2 Series representations of m.s.o.r.d.f.

In this section we extend different kinds of series representations from
multivariate second order random fields as were given in [6, Sec. 4.6]
to the setting treated in [3] and [4] of multivariate second order random
distribution fields.

A family of elements {hι}ι∈I of H of norm 1 is said to be gramian
orthonormal if [hι, hι]

2 = [hι, hι] for each ι ∈ I and [hι, hκ] = 0, for
ι 6= κ ∈ I. A maximal gramian orthonormal family will be called gramian
orthonormal basis.

The following lemma (see [5]) is also useful in what follows.

Lemma 2.1 For a subset H ⊂ H of the normal Hilbert module H , we
have that the submodule generated by it, S(H), is separable if the Hilbert
space generated by it, Sp(H), is separable.

We shall refer here to three such ways to express a multivariate second
order random distribution field U = {Uϕ}ϕ∈Dd . Namely we say that

• U admits an ordinary series representation, briefly o.s.r., if there
exists a sequence of scalar distributions {uj}j∈N and a sequence
{hj}j∈N of elements from L2

0[℘,H] = : H such that

Uϕ(ω) =

∞∑
j=1

uj(ϕ)hj(ω) ; ω ∈ Ω, (2.1)

which converges in the norm of H for each ϕ ∈ Dd;
• U admits a modular series representation, briefly m.s.r., if there ex-

ists a sequence of B(H) - valued distributions {uj}j∈N and a sequence
of functions {hj}j∈N from L2

0[℘,H] = H such that

Uϕ(ω) =

∞∑
j=1

uj(ϕ)hj(ω) ; ω ∈ Ω, (2.2)

which converges in the norm of H for each ϕ ∈ Dd;
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• U admits a tensor series representation, briefly t.s.r., if for each
ϕ ∈ Dd, Uϕ is the sum of a series of elementary tensors from D′d(H )
written in the form D′d(H) ⊗ L2

0(℘), i.e. there exists a sequence of
H-valued distributions {uj}j∈N and a sequence of functions {fj}j∈N
from L2

0(℘) such that for each ϕ ∈ Dd

Uϕ(ω) =

∞∑
j=1

uj(ϕ)fj(ω) ; ω ∈ Ω, (2.3)

also converging in the norm of H .

We notice that it is immediate that a series representation of U of type
(2.1), implies a modular series representation, i.e. of type (2.2), if we put
uj(ϕ) = uj(ϕ)IH , ϕ ∈ Dd.
Proposition 2.2 Suppose that the m.s.o.r.d.f. U has one of the above
three representations, where the systems {hj}j∈N are orthonormal in H
as a Hilbert space in the case of o.s.r., gramian orthonormal in H as
a normal Hilbert B(H)-module in the case of m.s.r. and {fj}j∈N are
orthonormal in L2

0(℘) in the case of t.s.r. Then the corresponding dis-
tributions forming the systems {uj}j∈N, {uj}j∈N, {uj}j∈N are respectively
uniquely determined.

Proof. We shall restrain ourselves to the last case. Suppose U has a
series representation (2.3) with an orthonormal basis {fj}j∈N ⊂ L2

0(℘) and

Uϕ(ω) =
∞∑
j=1

vj(ϕ)fj(ω) ; ϕ ∈ Dd, ω ∈ Ω is another tensor representation

of Uϕ, ϕ ∈ Dd. Then for some arbitrary h ∈ H it holds

0 =

[
flh,

∞∑
j=1

(
uj(ϕ)− vj(ϕ)

)
fj

]
= h⊗

(
ul(ϕ)− vl(ϕ)

)
, ϕ ∈ Dd, l ∈ N.

As h as taken arbitrary it results that ul ≡ vl , l ∈ N. � Some
characterizations of the series representability of m.s.o.r.d.f. are contained
in

Theorem 2.3 Let {Uϕ}ϕ∈Dd be a m.s.o.r.d.f. The following characteri-
zations hold:

(i) U has a representation of type (2.1) iff its vector time domain H(U)

is separable;

(ii) U has a representation of the form (2.2) iff its modular time domain
HU is separable;

(iii) U has a representation of the form (2.2) iff U has a tensor repre-
sentation as a series, i.e. of the form (2.3).

Proof. It suffices to show (ii) since (i) can be deduced from (ii) for
H = C. Suppose that representation (2.2) holds for U . It results then
easy that HU is contained in the Hilbert B(H) - module generated by
{hj , j ∈ N}, i.e. HU is separable. Conversely, if HU is separable, there
exists a countable set {hj , j ∈ N} in HU that forms a gramian basis for
HU , wherefrom for each ϕ ∈ Dd, the Fourier development in HU of Uϕ

Uϕ(ω) =

∞∑
j=1

[Uϕ, hj ]hj(ω), (2.4)
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infers (2.2) with uj(ϕ) = [Uϕ, hj ]H .
(iii) Now, if (2.2) holds, according to (ii) we have that HU is separable.

From the operatorial model of the normal Hilbert B(H) - module (see [6,
Corr.7, pp.30]) HU can be written as in (2.2) from [3] as the Hilbert space
tensor product H ⊗ GU , hence the measurements space GU (⊂ L2

0(℘)) is
separable. Choosing an orthonormal basis {fj} inGU and h ∈ H, ‖h‖ = 1,
it results (by Proposition 11, pp. 31 [6]) that the family {h⊗fj}j∈N (where
(h⊗fj)(ω) is identified with the product fjh) is a gramian basis in H⊗GU .
Thus it holds

Uϕ(ω) =

∞∑
j=1

[Uϕ, fjh]fj(ω)h, (2.5)

where fj(ω)h = (h ⊗ fj)(ω). Putting uj(ϕ) = [Uϕ, fjh]h, , (ϕ ∈ Dd)
from (2.5) we obtain (2.3).
Conversely, say that U has a representation (2.3), which means that Uϕ
is the limit of some linear combinations of elementary tensors from the
Hilbert space tensor product Sp {uj(ϕ), j ∈ N} ⊗ Sp {fj , j ∈ N}.
Now, since for any ϕ ∈ Dd, we have

Uϕ ∈ Sp {uj(ϕ), j ∈ N} ⊗ Sp {fj , j ∈ N} ⊂ H ⊗ Sp {fj , j ∈ N},

it results that HU ⊂ H⊗Sp {fj , j ∈ N}. The second member of the tensor
product being separable, it results that HU is separable. �

Remark 2.4 If (Ω,A , ℘) is separable, then each U ∈ D′d(H ) has all
types of series representation.

Corollary 2.5 Any stationary m.s.o.r.d.f. U has all types of series rep-
resentation.

3 Series representations and the covari-
ance distribution

In the study of a m.s.o.r.d.f. U , its operator and scalar covariance kernels
ΓU and γU respectively, as well as it reproducing kernel normal B(H)-
module HΓU and reproducing kernel Hilbert space GΓU , respectively the
reproducing kernel Hilbert space KγU play important roles. In what fol-
lows they will be connected to the series representations of U . First we eas-
ily deduce a series representation for the covariance kernels of a m.s.o.r.d.f.
U .

Proposition 3.1 If U is a m.s.o.r.d.f. of scalar covariance γU and op-
erator covariance ΓU , then the following assertion hold:

(i) if U has a series representation (2.1), where hj is an orthonormal
system, then

γU (ϕ,ψ) =

∞∑
j=1

uj(ϕ)uj(ψ) ; ϕ, ψ ∈ Dd; (3.1)
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(ii) if U has a modular series representation of the form (2.2), where
{hj}j∈N is a gramian orthonormal system, then

ΓU (ϕ,ψ) =

∞∑
j=1

uj(ϕ)[hj , hj ]uj(ψ)∗ ; ϕ, ψ ∈ Dd, (3.2)

in the absolute convergence from C1(H);

(iii) if U has a tensor series representation of the form (2.3), such that
{fj} is an orthonormal system in L2

0(℘), then

ΓU (ϕ,ψ) =

∞∑
j=1

uj(ϕ)⊗ uj(ψ) ; ϕ, ψ ∈ Dd, (3.3)

holds, where the elementary tensors are understood in their sesquilin-
ear form.

Proof. Direct verification. � Now, regarding the connections
of the series representations of U with the reproducing kernel structures
associated to γU and ΓU , we need first

Proposition 3.2 Let U = {Uϕ}ϕ∈Dd be a m.s.o.r.d.f. with scalar covari-
ance γU and operator covariance ΓU . KγU will be the reproducing kernel
Hilbert space associated to γU , while HΓU the reproducing kernel module
associated to ΓU .

(i) If {hι}ι∈I is an orthonormal system in the vector time domain H(U)

and uι(ϕ) = (hι, Uϕ)H , ι ∈ I, ϕ ∈ Dd, then {uι}ι∈I form an
orthonormal system in KγU .

(ii) If {hι}ι∈I form a gramian orthogonal basis for the modular time
domain HU and uι(ϕ) = [hι, Uϕ] for ι ∈ I, ϕ ∈ Dd, then the family
{uι}ι∈I forms a gramian basis for HΓU .

Proof. Since (i) is rather easy, we shall prove only (ii).

Let H0 be the set of distributions of the form
n∑
k=1

akΓU (ϕk, ·), where ak

are from B(H) and ϕk ∈ Dd. Define an operator T0 : H0 →HU by

T0

(
n∑
k=1

akΓ(ϕk, ·)

)
=

n∑
k=1

akUϕk .

Thus defined, T0 commutes with the modular action and preserves the
gramian. Since H0 is dense in HΓU and the range of T0 is dense in HU , T0

can be uniquely extended to a gramian unitary operator T : HΓU →HU .
For any ι ∈ I, hι can be expressed as

hι =

∞∑
k=1

aι,kUϕι,k ,

for aι,k ∈ B(H) and ϕι,k ∈ Dd. We thus have

uι(·) = [hι, U·]H =

[
∞∑
l=1

aι,lUϕι,l , U·

]
H

=

∞∑
l=1

aι,lΓ(ϕι,l, ·) = T−1

(
∞∑
l=1

aι,lUϕι,l

)
= T−1hι.
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As {hι}ι∈I was a gramian basis in HU , it results that {uι}ι∈I forms a
gramian basis in HΓU . � Combining Proposition 2.2 with Proposition
3.1 (ii) we get

Corollary 3.3 Let U = {Uϕ}ϕ∈Dd be a m.s.o.r.d.f. having the operator
correlation Γ = ΓU . If it admits a modular series representation, i.e. of
the form (2.2), where {hj}∞j=1 is a gramian basis of HU , then the family
{uj(·)∗}∞j=1 forms a gramian basis of the reproducing kernel module HΓ.

The next result establishes a connection to the measurements space.

Theorem 3.4 Let U = {Uϕ}ϕ∈Dd be a m.s.o.r.d.f. having the operator
covariance Γ = ΓU . If it admits a tensor series representation, i.e. of the
form (2.3), where {fj}∞j=1 is an orthonormal basis in the measurements
space GU ⊂ L2

0(℘), then {uj(·)}∞j=1 form an orthonormal basis in the
reproducing kernel Hilbert space GΓU .

Proof. Let {fj}∞j=1 be an orthonormal basis in GU . Then {fj}∞j=1 is an
orthonormal set in L2

0(℘), which according to Proposition 2.2 means that
the coefficients (H-valued distributions) uj are uniquely determined. On
the other side, we have that for any h ∈ H, ‖h‖ = 1, {(h ⊗ fj)(ω)}j =
{fj(ω)h}j form a gramian basis in H ⊗ GU = HU (cf. ), from which,
writing the Fourier development of Uϕ with respect to this gramian basis
Uϕ(ω) =

∑
[Uϕ, fjh]fjh, which is just (2.3) with

uj(ϕ) = [Uϕ, fjh]h, ϕ ∈ Dd, j ≥ 1.

Since fj(·)h = (h⊗ fj)(ω) ∈ HU , for any j ≥ 1, we have that there exist
{aj,m}∞m=1 ⊆ B(H) and {ϕj,m}∞m=1 ⊂ Dd, such that

fj(·)h =

∞∑
m=1

aj,mUϕj,m(·), j ≥ 1.

Then for any j ≥ 1 we have that

uj(ϕ) = [Uϕ, fjh]h =

[
Uϕ,

∑
m

aj,mUϕj,m

]
h

=
∑
m

[Uϕ, Uϕj,m ]a∗j,mh =
∑
m

Γ(ϕ,ϕj,m)a∗j,mh.
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Thus having in view the construction of the reproducing kernel Hilbert
space GΓU we have uj ∈ GΓU , for any j ≥ 1 and moreover,

(uj ,uk)GΓU
=

(∑
m

ΓU (·, ϕj,m)a∗j,mh,
∑
n

ΓU (·, ϕk,n)a∗k,nh

)
GΓU

=
∑
m,n

(ΓU (ϕk,n, ϕj,m)a∗j,mh, a
∗
k,nh)H

=
∑
m,n

(ak,n[Uϕk,n , Uϕj,m ]a∗j,mh, h)H

=

([∑
n

ak,nUϕk,n ,
∑
m

aj,mUϕj,m

]
h, h

)
H

= ([fkh, fjh]h, h)H

= ((fk, fj)L2
0(℘)(h⊗ h̄)h, h)H

= (fk, fj)L2
0(℘).

Hence, {uk}∞k=1 is an orthonormal set in GΓU .

From the Corollary 3.3 we get ΓU (ϕ,ψ) =
∞∑
k=1

uk(ϕ) ⊗ uk(ψ), for ϕ,ψ ∈

Dd. From Theorem II.4.24 ([6]) it results that {uk}∞k=1 is complete in
GΓU and is thus an orthonormal basis. �
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On quaternions

Moţ Ghiocel∗ Popa Lorena †

Abstract

In this paper we present a logical and methodical approach of introduc-
ing the complex numbers and the quaternions and to link these concepts
with the theory of matrices.
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1 The set of complex numbers

We consider the set C as the set of all ordered pairs of the real numbers
(a, b) and we denote:

C = R× R = {(a, b)|a, b ∈ R}.

Theorem 1.1 The set C endowed with the operations:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc)

where (a, b), (c, d) ∈ C, forms an algebraic structure of commutative field,
called the field of complex numbers.

Theorem 1.2 The set C endowed with the operations:

(a, b) + (c, d) = (a+ c, b+ d)

α · (a, b) = (αa, αb)

where α ∈ R, (a, b), (c, d) ∈ C, forms an algebraic structure of linear space,
called the space of complex numbers. (see [3], pp.42)

Remark 1.3 The field C contains the field of real numbers R as a subfield
and it has the element i ∈ C such that: i2 = −1, i = (0, 1).
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Indeed,

i2 = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −1C.

Using the notations 1R = (1, 0) şi i = (0, 1) and the theorems [1.1] and
[1.2], we obtain the algebraic form of complex numbers:

(a, b) = (a, 0) + (0, b) = a+ bi.

Therefore:
C = {a+ bi|a, b ∈ R}.

The following proposition gives us a matrix representation of the com-
plex numbers:

Proposition 1.4 The set of matrix:

C1 =

{
Ma,b =

(
a b
−b a

)a, b ∈ R
}

with the operations of matrix addition and matrix multiplication, forms
an isomorphic field with the field C.

Ma,b +Mc,d = Ma+c,b+d

Ma,b ·Mc,d = Mac−bd,ad+bc.

This result is immediately by direct calculation (see [1]).

Remark 1.5 For any Ma,b ∈ C1, we have:

Ma,b = a ·M1,0 + b ·M0,1 = aI2 + bM0,1.

2 The set of the quaternions

The another extension of the set of real numbers is given by the set of
quaternions. This set of hypercomplex numbers was introduced by W.
Hamilton in 1843.

Theorem 2.1 The set

R4 = R× R× R× R = {(a, b, c, d)|a, b, c, d ∈ R}
forms an algebraic structure of noncommutative field with respect to op-
erations:

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)

(a1, b1, c1, d1) · (a2, b2, c2, d2) = (a1a2 − b1b2 − c1c2 − d1d2, a1b2 + b1a2+

+ c1d2 − d1c2, a1c2 + c1a2 + d1b2 − b1d2, a1d2 + d1a2 + b1c2 − c1b2)
(2.1)

where (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ R4. (see [3], pp.25)
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Definition 2.2 The field R4 which contains the field of real numbers R
as a subfield and which has an imaginary units i, j, k ∈ C such that

i2 = −1, j2 = −1, k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik,
(2.2)

is called the quaternions field and it is denoted by K[i, j, k] or K.

Theorem 2.3 The set K[i, j, k] form an algebraic structures of linear
space with the operations:

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)

α · (a, b, c, d) = (αa, αb, αc, αd)

where α ∈ R, (a, b, c, d), (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ K[i, j, k]. (see [3],
pp.44)

Because, the imaginary units are identified with the elements from
K[i, j, k]: i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1), using the theorems
[2.1] and [2.3], we have:

(a, b, c, d) = (a, 0, 0, 0)+(0, b, 0, 0)+(0, 0, c, 0)+(0, 0, 0, d) = a+bi+cj+dk.

Therefore,

K = {a+ bi+ cj + dk|a, b, c, d ∈ R, i, j, kwith prop.[2.2]}.

To give a matrix representation for the quaternions, similarly with
[1.4] for complex numbers, we denote:

K1[i, j, k] =

{(
α β

β α

)α, β ∈ C
}

=

{(
a+ bi c+ di
−(c− di) a− bi

)a, b, c, d ∈ R
}
.

Theorem 2.4 K1[i, j, k] with the operations of matrix addition and ma-
trix multiplication, forms a field isomorphic with K.

Proof. Let us consider the mapping:

ϕ : K→ K1, ϕ(a+ bi+ cj + dk) =

(
a+ bi c+ di
−(c− di) a− bi

)
. (2.3)

ϕ is bijective and preserves the operations - it follows immediately by
direct calculation from [2.1] and from usual rules of addition and multi-
plication for matrices.

�

Remark 2.5 Any element from K1[i, j, k] can be written as:(
α β

β α

)
= aI2 + bI + cJ + dK,

where I2 =

(
1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
,K =

(
0 i
i 0

)
.
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Also, if we denote:

K2[i, j, k] =



a −b d −c
b a −c −d
−d c a −b
c d b a

a, b, c, d ∈ R


we obtain another matrix representation of quaternions, in this case using
only a real numbers.

Theorem 2.6 K2[i, j, k] with the operations of matrix addition and ma-
trix multiplications, forms a field isomorphic with K.

Proof. Let us consider the mapping:

ψ : K→ K2, ϕ(a+ bi+ cj + dk) =


a −b d −c
b a −c −d
−d c a −b
c d b a

 . (2.4)

ψ is bijective and preserves the operations - it follows immediately by
direct calculation from [2.1] and from usual rules of addition and multi-
plication of matrices. �

Remark 2.7 Any element from K2[i, j, k] can be written as:
a −b d −c
b a −c −d
−d c a −b
c d b a

 = aI4 + bI + cJ + dK,

where

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

J =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,K =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

Let us mention that W. Hamilton also introduced a vector represen-
tation for quaternions: q = a + bi + cj + dk ∈ K, admits the vectorial
writing:

q = s+−→v = [s,−→v ], (2.5)

where s - real scalar and −→v = a
−→
i + b

−→
j + c

−→
k - vector from the euclidean

space R3.
From the relation [2.5] we easily deduce that:

• the quaternion’s conjugate is: q = s−−→v = s− (a
−→
i + b

−→
j + c

−→
k );

• the norm of a quaternion is: q = s2 − (aa + b2 + c2 + d2);



On quaternions 74

• the quaternions multiplication can be rewritten as:

q1·q2 = (s1+−→v 1)·(s2+−→v 2) = s1s2−−→v 1
−→v 2+s2

−→v 1+s1
−→v 2+−→v 1×−→v 2

(2.6)

Remark 2.8 The quaternions which satisfy the condition s = 0, are
called vector - quaternions or ternions and they represent the image of a

real vector in quadridimensional space with the base (1,
−→
i ,
−→
j ,
−→
k ). Thus,

for q1 = [0,−→v 1] and q2 = [0,−→v 2], [2.6] become:

q1 · q2 = −−→v 1
−→v 2 +−→v 1 ×−→v 2

The vectorial representation of quaternions is useful for the representation
of rotations, which is actually based on multiplication between a quater-
nion and a vector.

3 Conclusions

R ⊆ C ⊆ K, and C can be included in K in three ways:

C ∼= {a+ bi|a, b ∈ R}
C ∼= {a+ cj|a, c ∈ R}

C ∼= {a+ dk|a, d ∈ R}.

But when we extend the set of complex numbers to the set of quaternions,
commutativity is lost. We mention also that: R ⊆ C ∼= C1 ⊆ K1.
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Three concepts of uniform polynomial dichotomy

for discrete-time linear systems in Banach spaces
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Abstract

This paper presents three concepts of uniform polynomial dichotomy
for linear discrete-time systems in Banach spaces. We treat the case in
which the sequence of projections is strongly invariant for the discrete
system (the evolution operator associated to the systems satisfies a local
invertibility property of the kernels of the projections). We give charac-
terizations of the presented concepts and present the connections between
them through counterexamples. The main result of this paper is a re-
sult of boundedness of the sequence of projections that give a dichotomy
property.
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1 Introduction

The property of dichotomy for evolution operators plays a key role in the
qualitative study of asymptotics of dynamical systems. Among the behav-
iors that govern these systems, one that led to many interesting results
is the exponential dichotomy property (both in the discrete / continu-
ous and uniform / nonuniform framework) - see for example [1], [5], [13],
[16], [17], [19], [20], [21], [22], [23],[24]. More general behaviors can also
be considered, for example the (generalized) (h, k)-dichotomies ([2], [3],
[7], [10],[14], [15]) and (h, k, µ, ν)-dichotomies ([25]). As a natural ”relax-
ation” of the exponential growth / decay, one can consider polynomial
growth rates with (at most) polynomial nonuniformities as asymptotics
for dynamical systems. This idea was successfully embraced and very
interesting results concerning the polynomial stability, instability and di-
chotomy were obtained, which vary from characterizations ([11], [12]) to
the study of stable manifolds ([6], [7], [8], [9]) and robustness of the poly-
nomial dichotomy property ([4]).
In this paper we define three concepts of uniform polynomial dichotomy
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Timişoara, Romania

†megan@math.uvt.ro Department of Mathematics, West University of Timişoara, Romania
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for evolution operators with respect to a strongly invariant sequence of
projections. We emphasize the connections between them and propose
an open problem regarding the weak behavior defined in this paper. Un-
der the assumption of boundedness of the sequence of projections, we
prove that the three concepts merge. The main result of our paper gives
an upper bound to the dichotomic sequence of projections, under the as-
sumption of uniform polynomial growth of the linear discrete-time system
in discussion.

2 Preliminaries

Let X be a Banach space and B(X) the Banach space of all bounded
linear operators on X. The norms on X and on B(X) will be denoted
by ∥ ⋅ ∥. The identity operator on X is denoted by I. We will denote by
∆ = {(m,n) ∈ N2 ∶ m ≥ n}.

We consider the linear difference system

xn+1 = Anxn, (A)

where A ∶ N→ B(X) is a given sequence.

Definition 2.1 The discrete evolution operator associated to the sys-
tem (A) is defined, for (m,n) ∈ ∆, by:

Anm = {
Am−1 ⋅ . . . ⋅An, if m > n
I, if m = n

(2.1)

Remark 2.2 It is obvious that AnmA
p
n = Apm, for all (m,n), (n, p) ∈ ∆

and every solution of (A) satisfies xm = Anmxn for all (m,n) ∈ ∆.

Definition 2.3 The discrete linear system (A) is said to have a uniform
polynomial growth if there exist M,ω > 0 such that

∥Anm∥ ≤M (
m + 1

n + 1
)
ω

, ∀(m,n) ∈ ∆.

Definition 2.4 An operator valued sequence P ∶ N → B(X) is called a
sequence of projections if PnPn = Pn for all n ∈ N.

If P ∶ N → B(X) is a sequence of projections, then the sequence Q ∶
N→ B(X) defined by Qn = I −Pn is also a sequence of projections, called
the complementary sequence of projections of P ∶ N→ B(X) .

Definition 2.5 We say that the sequence of projections P ∶ N→ B(X) is
bounded if there exist M ≥ 1 such that

∥Pn∥ ≤M, ∀n ∈ N.
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3 Uniform polynomial dichotomies

Definition 3.1 A sequence of projections P ∶ N→ B(X) is called

• invariant for the system (A) if for all n ∈ N we have that

AnPn = Pn+1An.

• strongly invariant for the system (A) if it is invariant for (A)
and for all n ∈ N, the restriction An ∶ Ker Pn → Ker Pn+1 is an
isomorphism.

If the sequence of projections P ∶ N→ B(X) is invariant for the system
(A), then we will say that (A,P ) is a dichotomy pair.

Remark 3.2 If a sequence of projections P ∶ N → B(X) is strongly in-
variant for (A) then it is also invariant for (A). The converse is not
generally true, as the below example shows it.

Example 3.3 Let X = R3 and define, for every n ∈ N, define An, Pn ∶
R3 → R3 by

Anx =

⎧⎪⎪
⎨
⎪⎪⎩

x, n ≥ 1

(x1,0, x3), n = 0
, Pnx =

⎧⎪⎪
⎨
⎪⎪⎩

(x1, x2,0), n = 0

(x1 + x2,0,0), n ≥ 1.

for x = (x1, x2, x3) ∈ R3. Having in mind that for all n ∈ N and x =
(x1, x2, x3) ∈ R3,

AnPnx =

⎧⎪⎪
⎨
⎪⎪⎩

An(x1, x2,0), n = 0

An(x1 + x2,0,0), n ≥ 1
=

⎧⎪⎪
⎨
⎪⎪⎩

(x1,0,0), n = 0,

(x1 + x2,0,0), n ≥ 1

and

Pn+1Anx =
⎧⎪⎪
⎨
⎪⎪⎩

Pn+1x, n ≥ 1

Pn+1(x1,0, x3), n = 0
=

⎧⎪⎪
⎨
⎪⎪⎩

(x1,0,0), n = 0

(x1 + x2,0,0), n ≥ 1

we deduce that (A,P ) is a dichotomy pair.
But P ∶ N → B(X) is not strongly invariant for (A). Assuming the

contrary, there exists x = (x1, x2, x3) ∈ R3 such that A0x = y, where y =
(−1,1,0) ∈ Ker P1. We henceforth get the contradiction (x1,0, x3) =
(−1,1,0).

Remark 3.4 If the sequence of projections P is strongly invariant for the
system (A) then

(i) for every n ∈ N there is an isomorphism Bn from the Ker Pn+1 to
Ker Pn such that AnBnQn+1 = Qn and BnAnQn = Qn;

(ii) for all (m,n) ∈ ∆ there is an isomorphism Bnm from Ker Pm to
Ker Pn with AnmB

n
mQm = Qm and BnmA

n
mQn = Qn for all (m,n) ∈

∆.

Throughout the paper, if not stated otherwise, we will consider P ∶
N → B(X) to be a sequence of projections which is strongly invariant for
(A).
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Definition 3.5 We say that the pair (A,P ) is uniformly strongly
polynomially dichotomic (u.s.p.d) if there exist N ≥ 1 and α > 0 such
that for all (m,n) ∈ ∆ the following conditions hold:

(uspd1) (m + 1)α∥AnmPn∥ ≤ N(n + 1)α;

(uspd2) (m + 1)α∥BnmQm∥ ≤ N(n + 1)α.

Remark 3.6 If the pair (A,P ) is u.s.p.d with constants N,α > 0 given
by Definition 3.5, then for all n ∈ N, max{∥Pn∥, ∥Qn∥} ≤ N .

Definition 3.7 We say that the pair (A,P ) is uniformly polynomi-
ally dichotomic (u.p.d) if there exist N ≥ 1 and α > 0 such that for all
(m,n,x) ∈ ∆ ×X the following properties hold:

(upd1) (m + 1)α∥AnmPnx∥ ≤ N(n + 1)α∥Pnx∥;

(upd2) (m + 1)α∥BnmQmx∥ ≤ N(n + 1)α∥Qmx∥.

Remark 3.8 If the pair (A,P ) is u.p.d with constants N,α > 0 given by
Definition 3.7, then (upd2) is equivalent with the following condition:

(m + 1)α∥Qnx∥ ≤ N(n + 1)α∥AnmQnx∥, ∀(m,n,x) ∈ ∆ ×X.

A first connection between the above defined concepts is given by

Proposition 3.9 If the dichotomy pair (A,P ) is u.s.p.d then it is also
u.p.d.

Proof. If (A,P ) us u.s.p.d, let N,α > 0 be such that (uspd1) and (uspd2)
hold. The conclusion follows from the fact that for all (m,n,x) ∈ ∆ ×X
one has that

(m + 1)α∥AnmPnx∥ ≤ (m + 1)α∥AnmPn∥ ⋅ ∥Pnx∥ ≤ N(n + 1)α∥Pnx∥

(m + 1)α∥BnmQmx∥ ≤ (m + 1)α∥BnmQm∥ ⋅ ∥Qmx∥ ≤ N(n + 1)α∥Qmx∥.

◻

Proposition 3.10 If P ∶ N → B(X) is bounded and (A,P ) is u.p.d then
it is also u.s.p.d.

Proof. Let M ≥ 1 be an upper-bound for P ∶ N → B(X) and N,α > 0 be
given by the u.p.d property. Let x ∈X and (m,n) ∈ ∆. It follows that

(m + 1)α∥AnmPnx∥ ≤ N(n + 1)α∥Pnx∥ ≤ 2NM(n + 1)α∥x∥

(m + 1)α∥BnmQmx∥ ≤ N(n + 1)α∥Qmx∥ ≤ 2NM(n + 1)α∥x∥.

From the above relations it follows that (A,P ) is u.s.p.d with constants
2MN,α > 0. ◻

Corollary 3.11 (A,P ) is u.s.p.d if and only if (A,P ) is u.p.d and P is
bounded.

Remark 3.12 The converse implication from the preceding proposition
is not generally valid, as the following example shows it.
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Example 3.13 On X = R2 endowed with ∥x∥ = ∣x1∣+∣x2∣, for x = (x1, x2) ∈
R2 consider the sequence of projections P ∶ N→ B(X) given by Pn(x1, x2) =
(x1 + nx2,0), for n ∈ N and (x1, x2) ∈ R2. Define, for every n ∈ N,

An =
n + 1

n + 2
Pn +

n + 2

n + 1
(I − Pn+1).

The evolution operator associated to the system (A) is given by

Anm =
n + 1

m + 1
Pn +

m + 1

n + 1
(I − Pm), (m,n) ∈ ∆.

It can easily be seen that P ∶ N→ B(X) is strongly invariant for (A), with
∥AnmPnx∥ =

n+1
m+1∥Pnx∥ and ∥BnmQmx∥ =

n+1
m+1∥Qmx∥, for all (m,n,x) ∈ ∆×

R2 hence (A,P ) is u.p.d. Having in mind that for all n ∈ N, ∥Pn(0,1)∥ =
∥(n,0)∥ = n, it follows that sup

n∈N
∥Pn∥ = +∞ hence (A,P ) is not u.s.p.d.

Definition 3.14 We say that the pair (A,P ) is uniformly weakly poly-
nomially dichotomic (u.w.p.d) if there exist constants N ≥ 1 and α > 0
such that for all (m,n) ∈ ∆ the following hold:

(uwpd1) (m + 1)α∥AnmPn∥ ≤ N(n + 1)α∥Pn∥;

(uwpd1) (m + 1)α∥BnmQm∥ ≤ N(n + 1)α∥Qm∥.

Remark 3.15 If the dichotomy pair (A,P ) is u.p.d then it is also u.w.p.d.

Open problem. At this point we ask wether the implication ”u.w.p.d
⇒ u.p.d” generally holds or not.

Proposition 3.16 If (A,P ) is u.w.p.d and P is bouded then (A,P ) is
u.s.p.d.

Proof. Let M ≥ 1 be an upper bound for P ∶ N → B(X) and N,α > 0 be
given by the u.w.p.d property. Then, for all (m,n,x) ∈ ∆ ×X it follows
that

(m + 1)α∥AnmPn∥ ≤ N(n + 1)α∥Pn∥ ≤ 2MN(n + 1)α

(m + 1)α∥BnmQm∥ ≤ N(n + 1)α∥Qm∥ ≤ 2MN(n + 1)α

hence (A,P ) is u.s.p.d. ◻

Remark 3.17 If (A,P ) is u.w.p.d then it does not necessarily follow that
it is also s.p.d, fact pointed out by the following example.

Example 3.18 Consider the system given in Example 3.13. Because
(A,P ) is u.p.d it is also u.w.p.d, but (A,P ) is not u.s.p.d.

Remark 3.19 The connections between the concepts of uniform polyno-
mial dichotomies presented in this paper are given by the following dia-
gram.

u.s.p.d

�⇙ ⇘

u.p.d Ô⇒ u.w.p.d
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Remark 3.20 If the sequence of projections which give the three concepts
of dichotomy for the system (A) is bounded, then we have that

u.s.p.d ⇔ u.p.d ⇔ u.w.p.d

The main result of the paper is given by the following

Theorem 3.21 Consider the system (A) having a uniform polynomial
growth. If there exists a strongly invariant sequence of projections P ∶ N→
B(X) such that the dichotomy pair (A,P ) is u.p.d then P ∶ N → B(X) is
bounded.

Proof. Let M,ω > 0 be given by the uniform polynomial growth of (A)
and N,α > 0 given by the u.p.d property of (A,P ). Let x ∈ X, n ∈ N be
fixed an m ≥ n. Consider the below estimations:

∥Pnx∥ − ∥x∥

N
(
m + 1

n + 1
)
α

−N (
m + 1

n + 1
)
−α

∥Pnx∥ ≤

≤
∥Qnx∥

N
(
m + 1

n + 1
)
α

−N (
m + 1

n + 1
)
−α

∥Pnx∥ ≤

≤ ∥AnmPnx∥ − ∥AnmQmx∥ ≤ ∥Anmx∥ ≤M (
m + 1

n + 1
)
ω

∥x∥.

It follows that

∥Pnx∥ ⋅ (
1

N
−N (

m + 1

n + 1
)
−2α

) ≤M (
m + 1

n + 1
)
ω

∥x∥. (3.1)

Take λ0 > 0 such that Nλ−2α0 < 1
N

and consider m = [λ0 +1](n+1)−1 ≥ n,
where [⋅] is the integer part function. Then (3.1) becomes

∥Pnx∥ (
1

N
−N[λ0 + 1]2α) ≤M([λ0 + 1])ω∥x∥

and by denoting K = ([λ0+1])ω
1
N
−N[λ0+1]−2α > 0, it follows that

∥Pnx∥ ≤K∥x∥, ∀(n,x) ∈ N ×X.

◻
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The T -convolution product

L. Sida∗ P. Gaspar †

Abstract

In this paper we extend the T -convolution product of periodic distri-
butions to vector valued T -periodic distributions.

Mathematics Subject Classification: 58A30, 60E05

Keywords: periodic functions, periodic distributions, vector valued T - periodic

distributions

1 Introduction

In this paper we will define the T -convolution product for vector val-
ued T - periodic distributions and extend some of the main properties
of this product to vector valued T - periodic distributions. Having in
mind the convolution product for vector valued distributions introduced
by L. Schwartz [9], we will define the T -convolution product for vector
valued T - periodic distributions in analogy to the T -convolution product
introduced by A. H. Zemanian (see [10], chap. 11) for scalar T -periodic
distributions.

As was stated and exemplified by A. H. Zemanian in [10, chp. 11]
for the scalar case, since T - periodic distributions do not have compact
support, we can’t have a proper definition of the convolution product for
this distributions (excepting the case when one of this distributions is
null). To overcome this A. H. Zemanian introduced a special kind of the
convolution product (see [10]), called the T -convolution product.

2 Periodic functions and periodic distri-
butions

Definition 2.1 ([10, chp.11, pp.314]) A function f : Rd → C is said
to be periodic if there exists T = (T1, T2, ..., Td) ∈ Rd, Ti > 0, such that
(LT f)(t) = f(t), t ∈ Rd, where Lτ , τ ∈ Rd stands for the translation
operator on Rd. T is called a period of f . The set of all periods of f is
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kT (kT = (k1T1, ..., kdTd), k ∈ Zd). The ”smallest” period is called the
fundamental period of f .

Definition 2.2 ([10, chp.11, pp. 314]) A function θ : Rd → C will be
called T -periodic test function, if it is periodic of period T and infinitely
smooth. The space of all such T -periodic test functions will be denoted by
DT (Rd) or Dd,T .

We shall also need the basic well known spaces of test functions
from distributions theory (see [1], [8]): D(Rd), S(Rd), E(Rd), B(Rd), which
we shall briefly denote Dd, Sd, Ed and Bd.

A function ξ(x) is said to be unitary if it is an element of Dd and there
exists T ∈ Rd, Ti > 0 for which∑

n∈Zd

(LnT ξ)(x) = 1

for all x ∈ Rd (see [10]). The space of unitary functions will be denoted
by Ud,T ,

Remark 2.3 For every ϕ ∈ Dd, the sum
∑
n∈Zd

(LnTϕ)(t) is finite and,

since LT (
∑
n∈Zd

(LnTϕ)) =
∑
n∈Zd

(LnTϕ), it defines a function from Dd,T .

Definition 2.4 ([9, chp. II, § 2]) Let E be a Banach space. Any linear
and continuous operator

U : Dd → E

is an E-valued distribution on Rd.

Definition 2.5 ([9]) A vector valued distribution U is periodic of period
T ∈ Rd, Ti > 0 if LTU = U .

We shall also use the basic spaces from distributions theory, namely

• D′(Rd, E) = D′d(E) the space of all E-valued distribution on Rd,
• D′T (Rd, E) = D′d,T (E) the space of E-valued periodic distribution of

period T ∈ Rd, Ti > 0,

• S ′(Rd, E) = S ′d(E) the space of E-valued tempered distribution,

• E ′(Rd, E) = E ′d(E) the space of E-valued distribution with compact
support,

• B′(Rd, E) = B′d(E) the space of E-valued bounded distributions.

Remark 2.6 The derivative of an E-valued tempered distribution is also
an E-valued tempered distribution. The E-valued tempered distributions
generalize the bounded (slow-growing) locally integrable E-valued func-
tions; all E-valued distributions with compact support and all square-
integrable E-valued functions are E-valued tempered distributions.

We also recall the inclusion relations (with continuous embedding)
between the spaces from distribution theory:

D′d,T (E) ⊂ B′d(E) ⊂ S ′d(E) ⊂ D′d(E). (2.1)
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For locally integrable E - valued function F , we have that, the
operator UF defined by

UF (ϕ) :=

∫
Rd

ϕ(t)F (t)dt, ϕ ∈ Dd (2.2)

is linear and continuous on Dd, hence UF ∈ D′d(E).
Every E-valued tempered distribution is a derivative of finite order

of some continuous E-valued function of polynomial growth (the structure
theorem for S ′d(E)).

3 The T -convolution product

Let us recall the function from L1
d,T , and, by analogy with the case

of non-periodic functions from L1
d, we will quote a theorem for the T -

convolution product for scalar T -periodic functions (meaning from L1
d,T ).

We note first that for a function f ∈ L1
d,T , T ∈ Rd, Ti > 0, for any

a ∈ Rd the following equality holds (see [6]):∫
[a,a+T ]

f(t)dt =

∫
[0,T ]

f(t)dt. (3.1)

We enounce now the main result for the T -convolution product on
L1
d,T .

Theorem 3.1 Let f, g ∈ L1
d,T . Then for any s ∈ [0, T ), the function

t→ f(t)g(s− t) is in L1
d,T . The T -convolution f ∗T g defined by:

(f ∗T g)(s) =

∫
[0,T )

f(t)g(s− t)dt, s ∈ [0, T ) (3.2)

is also a function from L1
d,T and also

‖ f ∗T g ‖1≤‖ f ‖1 · ‖ g ‖1 . (3.3)

Thus L1
T becomes a Banach algebra with the T -convolution for function

as multiplication.

The proof of this theorem is based on the reasoning presented in [1] para-
graph 2.4.3, p. 129, and for the T -periodicity we have

(f ∗T g)(t−T ) =

∫
[0,T ]

f(s)g(t−T−s)dt =

∫
[0,T ]

f(s)g(t−s−T )dt
g(t−T )=g(t)

=

g(t−T )=g(t)
=

∫
[0,T ]

f(s)g(t− s)dt = (f ∗T g)(t).

Corollary 3.2 The convolution product between two functions of which
only one is periodic, is a periodic function of same period, i.e. if f ∈ Dd,T
şi g ∈ Dd, then f ∗ g ∈ Dd,T . (see [6], p. 14)
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Proposition 3.3 (see [6]) The T -convolution product f ∗T g is a contin-
uous application in the meaning of the topology from L1

d,T , i.e. for any
convergent sequence (fn)n≥1 from L1

d,T , we have

fn ∗T g
L1

T−→ f ∗T g for any g ∈ L1
T .

At the beginning let us recall same known results for the convolu-
tion product of scalar distributions.

• The convolution between a distribution u and a function ϕ ∈ Dd:

(u ∗ ϕ)(t) = (u, ϕt), ϕ ∈ Dd, t ∈ Rd (3.4)

where ϕt = Ltϕ̌.
If u ∈ D′d, ϕ ∈ Dd then u ∗ ϕ ∈ Ed, or if u ∈ E ′d, ϕ ∈ Ed then u ∗ ϕ ∈ Ed,
etc. (see [1], p. 212)

• The convolution product between two distributions, one of them
with compact support u ∈ D′d, v ∈ E ′d:

(u ∗ v, ϕ) = (u, v̌ ∗ ϕ), ϕ ∈ Dd. (3.5)

If u ∈ D′d, v ∈ E ′d then u ∗ v ∈ D′d, or if u ∈ E ′d, v ∈ E ′d then u ∗ v ∈ E ′d,
etc.(see [1], p. 216)
If u ∈ D′d, v ∈ E ′d then u ∗ v ∈ D′d, or if u ∈ E ′d, v ∈ E ′d then u ∗ v ∈ E ′d, etc.

• The T -convolution between two T -periodic distributions uT , vT ∈
(Dd,T )′ (or finite convolution):

(uT ∗T vT , θ) = vT (ǔT ∗T θ), θ ∈ Dd,T , (3.6)

It is known that uT ∗T vT ∈ (Dd,T )′ (see [10]).
• The T -convolution between a T -periodic distributions uT ∈

(Dd,T )′ and a test T -periodic function θ ∈ Dd,T :

(uT ∗T θ)(t) = uT (Ltθ̌) = (u, ξθt), t ∈ Rd, ξ ∈ Ud,T . (3.7)

It is clear that uT ∗T θ ∈ Dd,T (see [10] p. 326).
For the case of vector valued distributions we consider the locally

convex quasi - complete space X. Let U ∈ D′d(X) and V ∈ E ′d(X).

Definition 3.4 The convolution product between two vector valued dis-
tributions U ∈ D′d(X), V ∈ E ′d(X), is defined as:

(U ∗ V )(ϕ) = V (Ǔ ∗ ϕ), ϕ ∈ Dd, (3.8)

and U ∗ V ∈ D′d(X) ( see [9], p. 72).

We mention that, the above definition obviously makes sense if U
is a scalar distribution. In this general case the formula (3.8) is meant in
the weak sense, i.e.

x′(U ∗ V (ϕ)) = V
[
x′(Ǔ ∗ ϕ)

]
, x′ ∈ X ′. (3.9)

We recall here some properties of the convolution product between
two vector valued distributions:
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• The convolution with δ :

U ∗ δ = U, ∀U ∈ D′d(X). (3.10)

• The derivation Dα is a convolution with Dαδ, ie

DαU = U ∗Dαδ, α ∈ N. (3.11)

• From the convolution with a test function ϕ ∈ Dd results the reg-
ularization of a vector valued distribution by a scalar function, infinitely
differentiable. (see [9], vol. II p. 72)

(U ∗ ϕ)(t) = (LtU)(ϕ̌), ϕ ∈ Dd, t ∈ Rd.

We mention that, the convolution of a vectorial distribution with
a scalar function ϕ cǎ, in particular, if U a temperate distribution, then
the convolution have sense for any ϕ ∈ Sd, and if U is a distribution with
compact support then the convolution have sense for any ϕ ∈ Ed.

In the next definition we extend the notion of T -convolution prod-
uct, for the case of vector valued T -periodic distributions.

Definition 3.5 The T -convolution product between two vector valued T -
periodic distributions UT , VT ∈ B(Dd,T , X) is:

(UT ∗T VT )(θ) = VT (ǓT ∗T θ), (3.12)

for any θ ∈ Dd,T .

We mention that

(ǓT ∗T θ)(t) = (ǓT , ξL−tθ) = (UT , ξ(L−tθ)
∨) = (U, η(ξL−tθ)

∨),

like function of t, is (see [10] Cor. 2.7-2a, p. 74) from D′d,T .

Remark 3.6 Because (ǓT , ξL−tθ) is in Dd,T , the right member of the
relation (3.12) always exist for any choice of UT şi VT from B(Dd,T , X).
This is in contrast with the usual convolution product of two distributions
of D′d(X), where, to ensure the existence of convolution, it requires to
introduction the additional restrictions.

Remark 3.7 The definition (3.12) of T -convolution product is correct,
since for regular periodic distributions it coincides with the standard defi-
nition of the T -convolution of periodic functions.

In the next theorem we show that, the space of vector valued T -
periodic distributions is closed under the T -convolution product.

Theorem 3.8 The T -convolution product between two vector valued T -
periodic distributions
B(Dd,T , X) is still in B(Dd,T , X). In other words, the space B(Dd,T , X)
is closed under the T -convolution product.

Proof. We show that (3.12) defines an operator from B(Dd,T , X).
For the linearity of UT ∗T VT we consider α, β ∈ C, and θ1, θ2 ∈

Dd,T . Then from the relation (3.12) it results

(UT ∗T VT )(αθ1 + βθ2) = VT (ǓT ∗T (αθ1 + βθ2)) =
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= VT (α(ǓT ∗T θ1) + β(ǓT ∗T θ2)) =

= αVT (ǓT ∗T θ1) + βVT (ǓT ∗T θ2) =

= α(UT ∗T VT )(θ1) + β(UT ∗T VT )(θ2).

For the continuity UT ∗T VT we consider the sequence {θk}∞k=1 → θ
in Dd,T . Now

(UT ∗T VT )(θk) = (V × Ǔ , η(t)ξ(s)θk(t+ s))→ (V × Ǔ , η(t)ξ(s)θ(t+ s)) =

= (UT ∗T VT )(θ),

because if {θk}∞k=1 → θ in Dd,T then {ηξθk}∞k=1 → ηξθ ı̂n Dd as well.
So, UT ∗T VT ∈ B(Dd,T , X), where it results that UT ∗T VT = WT

where W ∈ D′d,T (X), i.e. W is T -periodic. �
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Science, (S. Nădăban and C. Stoica edtrs.), Ed. Mirton, Timişoara,(
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Applications of graph theory in chemistry

Şandru Andrea∗ Palcu Adrian †

Abstract

Chemical Graph theory is used to model physical properties of
molecules called alkanes. Indices based on the graphical structure of the
alkanes are defined and used to model both the boiling point and melting
point of the molecules.

Mathematics Subject Classification: 94C15, 97K30
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1 Introduction

This article has arisen because the curriculum of computer science states
that the examples used in teaching will be mainly drawn from the cur-
riculum Mathematics and Natural Sciences. Because in class XI studying
concept graph and his applications, we thought it would be a good ex-
ample linking the concepts learned in chemistry with concepts learned
in computer science. Chemical graph theory is a branch of mathematics
which combines graph theory and chemistry. Graph theory is used to
mathematically model molecules in order to gain insight into the physical
properties of these chemical compounds. Some physical properties, such
as the boiling point, are related to the geometric structure of the com-
pound. This is especially true in the case of chemical compounds known
as alkanes. Alkanes are organic compounds exclusively composed of car-
bon and hydrogen atoms. One example of an alkane is ethane, shown in
Figure 1.
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Figure 1:

Each carbon atom has four chemical bonds and each hydrogen atom has
one chemical bond. Therefore, the hydrogen atoms can be removed with-
out losing information about the molecule. The resulting representation
of ethane is the carbon tree shown in Figure 2.

Figure 2:

This carbon tree can be represented as a graph by replacing the carbon
atoms with vertices. Chemical bonds are then represented as an edge in
the graph. Figure 3 shows the graphical representation of ethane com-
posed of two vertices connected by a single edge.

Figure 3:

2 Main results

The structure of an alkane determines its physical properties. Physical
properties of alkanes can be modeled using topological indices. Some
of these indices are well known outside of the chemical and mathematical
communities such as the relative molecular mass (Mr) of a compound. For
alkanes, the relative molecular mass is a function of the number of carbon
atoms, denoted by n, and is given by Mr(n) = 12.01115n + 1.00797(2n +
2) atomic mass units (amu). Using this formula, you can determine that
the relative molecular mass of ethane in Figure 3 is 30.0701amu.
The boiling point of alkanes is determined by the geometric structure of
the alkane. Boiling points are a measure of the forces of attraction between
like molecules. For essentially nonpolar compounds such as alkanes, these
forces are London dispersion forces due to instantaneous dipole-induced
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dipole attractions. Dispersion forces are very short range forces which in-
crease with the number of electrons which is proportional to the relative
molecular mass for the alkanes. The alkane boiling point should depend
on the relative molecular mass and on how well the molecules pack to-
gether, which is related to the geometry of the molecule. The dependence
on the geometry is complex, but the boiling point should decrease in a
general way as the compactness of the molecule increases if the relative
molecular mass stays the same. Balaban noted that for the same relative
molecular mass, the boiling point decreased with increased branching.
We examine the structures and boiling points of octane and
2,2,4-trimethylpentane to illustrate this result. Both are composed of
8 carbon atoms so they have the same molecular weight. A 3D represen-
tation is given in Figure 4 and the graphical representation is given in
Figure 5.

Figure 4:

Figure 5:

2,2,4-trimethylpentane is a more compact alkane and is sometimes called
isooctane. A 3D representation is given in Figure 6 and the graphical
representation is given in Figure 7.
From the above discussion, we expect the boiling point of
2,2,4-trimethylpentane to be lower than that of octane. This is indeed
the case. The boiling point of octane is 398.7 K while the boiling point of
2,2,4-trimethylpentane is 372.4 K. It is possible to model the boiling point
of families of alkanes having similar geometric structure using molecular
weight as the only index in the model. In modeling the alkanes in gen-
eral, more topological indices are needed to reduce the error in the model.
Some examples include the Hosoya index, the Wiener number, the Wiener
path numbers, the Mean Wiener index, and the Methyl index.
The Hosoya index (denoted Z) is the sum of the coefficients of the simple
matching polynomial for a graph. This is equivalent to the number of
matchings a graph contains plus 1 to account for the matching consisting
of no edges. A matching of a graph G is a (possibly empty) set of edges
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Figure 6:

Figure 7:

of G in which no two edges share a common vertex. The set of edges in
a matching are said to be independent. An algorithm for computing the
simple matching polynomial of a graph is given by Farrell. The Hosoya
index for ethane is 2 since it contains only one edge yielding one matching
with zero edges and one matching with one edge. Using this algorithm
we determine the Hosoya index for 2,2,4-trimethylpentane is 19. You can
verify this index by carefully inspecting all the sets of independent edges.
There is 1 way to choose zero edges, there are 7 ways to choose only one
edge in the matching, 11 ways to choose two edges in the matching, and
there is no way to choose three or more edges for a matching. This gives,
1 + 7 + 11 = 19 simple matchings of 2,2,4-trimethylpentane verifying the
Hosoya index for this alkane.
The Wiener number (denoted W) is the sum of the distances between all
pairs of vertices in a graph. It can be computed by adding the entries
in the upper (or lower) triangular part of the distance matrix of a graph.
Ethane has a Wiener number of 1 since it has only one pair of vertices
separated by an edge. For 2,2,4-trimethylpentane, we use the distance
matrix in Figure 9 computed from the labeled graph in Figure 8. The
Wiener number of 2,2,4-trimethylpentane is therefore 66.

The Wiener path numbers (denoted 1P , 2P , 3P , 4P , ...) are defined by
iP which is the number of pairs of vertices in the graph separated by i
edges. iP can be computed using the distance matrix of a graph and
counting the number of times i appears in the upper triangular part of
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Figure 8:

Figure 9:

the matrix. Using the distance matrix for 2,2,4-trimethylpentane given
in Figure 9, we find that 1P = 7, 2P = 10, 3P = 5, and 4P = 6. The
Mean Wiener index (denoted W) is the average of the distances between
all pairs of vertices in a graph. We previously showed the Wiener num-
ber for 2,2,4-trimethylpentane is 66. Using this, we calculate that W =
66/28 = 2.35714. The methyl index was introduced to help graphically
represent the branching of the alkanes. The methyl index (denoted Mth)
is defined to be the number of degree one vertices which are adjacent to a
vertex of degree three or greater. For example, the methyl index for 2,2,4-
trimethylpentane is 5. The five methyl edges as seen in Figure 8 are (1, 2),
(2, 6), (2, 7), (4, 5), and (4, 8). All of the indices described can be used to
construct models of the various physical properties of alkanes. Several of
these indices were used to model the boiling points of alkanes having six to
twelve carbon atoms. The normal alkanes with thirteen through twenty-
two carbons were also included to facilitate the prediction of test data
having thirteen to twenty-two carbons. The total number of alkanes mod-
eled was 187. One such model is f(1P,2 P, ...,6 P,Mth, Z) = 847.41474 +
221.61698(1P )0.494201182.20853(2P )0.03689 + 0.00125(3P )3.39724−
−3.02445(4P )0.93751 − 2.16070(5P )1.01631 − 0.56366(6P )1.38233−
−2.10575Mth0.5695 − 9.61075Z0.19907

The coefficient of determination for this model is 0.997068 and the stan-
dard deviation is 2.1 degrees (C). Table 1 gives the number and percentage
of alkanes with the specified absolute boiling point deviations given by this
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model.

BP dev. alkanes % alkanes

0 − 10 84 44.9
1 − 20 48 25.7
2 − 40 46 24.6
4 − 60 5 2.7
6 − 90 3 1.6
> 90 1 0.5
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