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Abstract

Let R be a commutative ring with1 6= 0 andA(R) be the set of ideals with nonzero annihilators. The
annihilating-ideal graph ofR is defined as the graphAG(R) with the vertex setA(R)∗ = A(R) \ {(0)} and
two distinct verticesI andJ are adjacent if and only ifIJ = (0). In this paper, we first study the interplay
between the diameter of annihilating-ideal graphs and zero-divisor graphs. Also, we characterize ringsR when
gr(AG(R)) ≥ 4, and so we characterize rings whose annihilating-ideal graphs are bipartite. Finally, in the last
section we discuss on a relation between the Smarandache vertices and diameter ofAG(R).
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1 Introduction

Throughout this paper, all rings are assumed to be commutative with identity. We denote the set of all ideals which
are a subset of an idealJ of R by I(J). We call an idealI of R, an annihilating-ideal if there exists a non-zero
ideal J of R such thatIJ = (0), and use the notationA(R) for the set of all annihilating-ideals ofR. By the
Annihilating-Ideal graphAG(R) of R we mean the graph with verticesAG(R)∗ = A(R) \ {(0)} such that there is
an (undirected) edge between verticesI andJ if and only if I 6= J andIJ = (0). ThusAG(R) is an empty graph
if and only if R is an integral domain. The concept of the annihilating-ideal graph of a commutative ring was first
introduced by Behboodi and Rakeei in [8] and [9]. Also in [3],the authors of this paper have extended and studied
this notion to a more general setting asthe annihilating-ideal graph with respect to an ideal ofR, denotedAGI(R).

LetG be a graph. Recall thatG is connected if there is a path between any two distinct vertices ofG. For vertices
x andy of G, letd(x, y) be the length of a shortest path fromx to y (d(x, x) = 0 andd(x, y) = ∞ if there is no such
path). The diameter ofG, denoted bydiam(G), is sup{d(x, y)|x andy are vertices ofG}. The girth ofG, denoted

∗This research was in part supported by grant numbers (89160031) and (91130031) from IPM for the second and fourth authorsrespec-
tively.

†Corresponding author
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by gr(G), is the length of a shortest cycle inG (gr(G) = ∞ if G contains no cycles).AG(R) is connected with
diam(AG(R)) ≤ 3 [8, Theorem 2.1] and ifAG(R) contains a cycle, thengr(AG(R)) ≤ 4 [8, Theorem 2.1]. Thus
diam(AG(R)) = 0, 1, 2 or 3; andgr(AG(R)) = 3, 4 or ∞. Also,AG(R) is a singleton (i.e.,diam(AG(R)) = 0)
if and only if eitherR ∼=

K[x]
(x2)

, whereK is a field orR ∼= L, whereL is a coefficient ring of characteristicp2, that

is L ∼= A
(p2.1) , whereA is a discrete valuation ring of characteristic0 and residue field of characteristicp, for some

prime numberp [2, Remark 10].
Let Z(R) be the set of zero-divisors ofR. The zero-divisor graph ofR, denoted byΓ(R), is the (undirected)

graph with verticesZ(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors ofR, and for distinctx, y ∈ Z(R)∗, the
verticesx andy are adjacent if and only ifxy = 0. Note thatΓ(R) is the empty graph if and only ifR is an integral
domain. Moreover, a nonemptyΓ(R) is finite if and only ifR is finite and not a field [5, Theorem 2.2]. The concept
of a zero-divisor graph was introduced by Beck [7]. However,he let all the elements ofR be vertices of the graph
and was mainly interested in colorings.Γ(R) is connected withdiam(Γ(R)) ≤ 3 [5, Theorem 2.3] and ifΓ(R)

contains a cycle, thengr(Γ(R)) ≤ 4 [4, Theorem 2.2(c)]. Thusdiam(Γ(R)) = 0, 1, 2 or 3; andgr(Γ(R)) = 3, 4 or
∞. For a ringR, nil(R) is the set of the nilpotent elements ofR. We say thatR is reduced ifnil(R) = 0.

LetKn denote the complete graph onn vertices. That is,Kn has vertex setV with |V | = n anda− b is an edge
for everya, b ∈ V . LetKm,n denote the complete bipartite graph. That is,Km,n has vertex setV consisting of the
disjoint union of two subsets,V1 andV2, such that|V1| = m and|V2| = n, anda− b is an edge if and only ifa ∈ V1

andb ∈ V2. We may sometimes writeK|V1|,|V2| to denote the complete bipartite graph with vertex setsV1 andV2.
Note thatKm,n = Kn,m. Also, for every positive integern, we denote a path of ordern, byPn.

In the present paper, we study the diameter and girth of annihilating-ideal graphs. In Section2, we show that ifR
is a Noetherian ring withAG(R) ≇ K2, thendiam(AG(R)) = diam(AG(R[x]) = diam(AG(R[x1, x2, ..., xn]) =

diam(AG(R[[x]]) = diam(Γ(R)) = diam(Γ(R[x]) = diam(Γ(R[x1, x2, ..., xn]) = Γ(R[[x]]). In Section3, we
characterize ringsR whengr(AG(R)) ≥ 4. Finally, in the last section, we study some properties of theSmarandache
verticesof AG(R).

2 Diameter ofAG(R), AG(R[x]), andAG(R[[x]])

In this section, we show that ifR is a Noetherian ring withAG(R) ≇ K2, thendiam(AG(R)) = diam(AG(R[x])) =

diam(AG(R[x1, x2, ..., xn])) = diam(AG(R[[x]])) = diam(Γ(R)) = diam(Γ(R[x])) = diam(Γ(R[[x]])).

We remark that ifR is a commutative ring with identity, then the set of regular elements ofR forms a saturated
and multiplicatively closed subset ofR. Hence the collection of zero-divisors ofR is the set-theoretic union of
prime ideals. We writeZ(R) = ∪i∈ΛPi with eachPi prime. We will also assume that these primes are maximal
with respect to being contained inZ(R).

Theorem 2.1 LetR be a ring andAG(R) 6∼= K2. Then the following conditions are equivalent:
(1) AG(R) is a complete graph.
(2) AG(R[x]) is a complete graph.
(3) AG(R[x1, x2, ..., xn]) for all n > 0 is a complete graph.
(4) AG(R[[x]]) is a complete graph.
(5) Γ(R) is a complete graph.
(6) Γ(R[x]) is a complete graph.
(7) Γ(R[x1, x2, ..., xn]) for all n > 0 is a complete graph.
(8) Γ(R[[x]]) is a complete graph.
(9) (Z(R))2 = 0.
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Proof. If R ∼= Z2 × Z2, thenAG(R) ∼= K2, yielding a contradiction. Thus By [5, Theorem 2.8],Γ(R) is a
complete graph if and only if(Z(R))2 = (0). Also, by [2, Theorem 3],AG(R) is a complete graph if and only if
(Z(R))2 = (0). So, the results follow easily from [6, Theorem 3.2]. �

Lemma 2.2 LetR be a ring such thatdiam(AG(R)) = 2. If Z(R) = P1 ∪ P2 with P1 andP2 distinct primes in
Z(R), thenP1 ∩ P2 = (0).

Proof. Let x ∈ P1 ∩ P2, p1 ∈ P1 \ P2 andp2 ∈ P2 \ P1. Sincediam(AG(R)) = 2, either(Rp1)(Rp2) = (0) or
there exists a non-zero idealI such thatI ⊆ Ann(p1)∩Ann(p2). If (Rp1)(Rp2) 6= (0), thenI(p1+p2) = (0). Thus
p1 + p2 ∈ Z(R), yielding a contradiction. Therefore,(Rp1)(Rp2) = (0) and sop1p2 = 0. Sincep2 + x ∈ P2 \ P1

andp1 + x ∈ P1 \ P2, we conclude that0 = p1(p2 + x) = p1x and0 = p2(p1 + x) = p2x. Thusx(p1 + p2) = 0,
sox = 0. Therefore,P1 ∩ P2 = (0). �

Lemma 2.3 LetR be a Noetherian ring andAG(R) 6∼= K2. Thendiam(AG(R)) = 2 if and only ifZ(R) is either
the union of two primes with intersection(0) or Z(R) is a prime ideal such that(Z(R))2 6= (0).

Proof. Suppose thatZ(R) = ∪i∈ΛPi where everyPi is a maximal prime inZ(R) and |Λ| > 2. SinceR is a
Noetherian ring, by [12, Theorem 80],Λ is finite. LetP1, P2, P3 ∈ {Pi : i ∈ Λ}. If P1 ⊆ ∪i∈Λ\{1}Pi, then by [12,
Theorem 81],P1 ⊆ Pi for somei ∈ Λ \ {1}, yielding a contradiction. Therefore, there existsp1 ∈ P1 \ ∪i∈Λ\{1}Pi.
Similarly, there existsp2 ∈ P2 \ ∪i∈Λ\{2}Pi. Sincediam(AG(R)) = 2, either(Rp1)(Rp2) = (0) or there exists a
non-zero idealI such thatI ⊆ Ann(p1) ∩ Ann(p2). If (Rp1)(Rp2) 6= (0), thenI(Rp1 + Rp2) = (0). Thus there
existsPk ∈ {Pi : i ∈ Λ} such thatRp1 + Rp2 ⊆ Pk, yielding a contradiction. Therefore,(Rp1)(Rp2) = (0) and
sop1p2 = 0. Thusp1p2 ∈ P3, sop1 ∈ P3 or p2 ∈ P3, yielding a contradiction. Thus|Λ| ≤ 2. If (Z(R))2 = (0),
then sinceAG(R) 6∼= K2, by Theorem 2.1,diam(AG(R)) ≤ 1, yielding a contradiction. We conclude thatZ(R) =

P1 ∪ P2. Then by Lemma 2.2,P1 ∩ P2 = (0). ThusZ(R) is either the union of two primes with intersection(0) or
Z(R) is prime such that(Z(R))2 6= (0).

Conversely, ifZ(R) = P is a prime ideal, then by [12, Theorem 82], there exists a nonzero elementa ∈ R

such thataZ(R) = (0). Let I, J ∈ V (AG(R)). Then(Ra)I = (Ra)J = (0). Therefore,diam(AG(R)) ≤ 2.
If diam(AG(R)) ≤ 1, then sinceAG(R) 6∼= K2, by Theorem 2.1,(Z(R))2 = (0), yielding a contradiction.
Thus diam(AG(R)) = 2. Now, we assume thatZ(R) is the union of two primes with intersection(0). Let
Z(R) = P1 ∪ P2 and I, J ∈ V (AG(R)). SinceI ⊆ Z(R) = P1 ∪ P2, by [12, Theorem 81],I ⊆ P1 or
I ⊆ P2. Similarly, J ⊆ P1 or J ⊆ P2. Without loss of generality we can assume thatJ ⊆ P1. If I ⊆ P2, then
IJ ⊆ P1P2 = (0). If I ⊆ P1, thenIP2 = JP2 = (0). Therefore,diam(AG(R)) ≤ 2. If diam(AG(R)) ≤ 1,
then sinceAG(R) 6∼= K2, by Theorem 2.1,Z(R) is a prime ideal such that(Z(R))2 = (0), yielding a contradiction.
Thusdiam(AG(R)) = 2.

Theorem 2.4 LetR be a Noetherian ring andAG(R) 6∼= K2. Then the following conditions are equivalent:
(1) diam(AG(R)) = 2.
(2) diam(AG(R[x])) = 2.
(3) diam(AG(R[x1, x2, ..., xn])) = 2 for all n > 0.
(4) diam(AG(R[[x]])) = 2.
(5) diam(Γ(R)) = 2.
(6) diam(Γ(R[x])) = 2.
(7) diam(Γ(R[x1, x2, ..., xn])) = 2 for all n > 0.
(8) diam(Γ(R[[x]])) = 2.
(9) Z(R) is either the union of two primes with intersection(0), or Z(R) is prime and(Z(R))2 6= 0.

Proof. It follows from Lemma 2.3 and [6, Theorem 3.11]. �
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3 A Characterization of the Ring R When gr(AG(R)) ≥ 4

In [1, Section 3], the authors have studied rings whose annihilating-ideal graphs are bipartite. In this section, we
characterize ringsR whengr(AG(R)) ≥ 4, and so we characterize rings whose annihilating-ideal graphs are bipar-
tite.

Proposition 3.1 LetR be a reduced ring. Then the following statements are equivalent.
(1) Z(R) is the union of two primes with intersection(0).
(2) AG(R) is a complete bipartite graph.

Proof. (1) ⇒ (2) Let Z(R) = P1 ∪ P2, whereP1 andP2 are prime ideals such thatP1 ∩ P2 = (0). Therefore,
P1P2 = (0). SinceAnn(P1)P1 = (0) ⊆ P2 andP1 * P2, we conclude thatAnn(P1) ⊆ P2. Note thatP2 ⊆

Ann(P1), soAnn(P1) = P2. Similarly Ann(P2) = P1. Let V1 = I(P1) andV2 = I(P2). Let J1, J2 ∈ V2 be
two nonzero ideals such thatJ1J2 = (0). ThenJ1J2 ⊆ P1, and soJ1 ∈ P1 or J2 ∈ P1, yielding a contradiction
sinceP1 ∩ P2 = (0). Therefore, every non-zero idealsJ1 and J2 in V2 are not adjacent. Similarly, everyI1
andI2 in V1 are not adjacent. SinceP1 ∩ P2 = (0), Ann(P1) = P2 andAnn(P2) = P1, we can conclude that
AG(R) ∼= K|V1|−1,|V2|−1.

(2) ⇒ (1) Let AG(R) ∼= K|V1|,|V2| such thatV1 = {Ii ∈ A(R) : i ∈ Λ1} \ {(0)} andV2 = {Jj ∈ A(R) : j ∈

Λ2}\{(0)}. LetP1 =
⋃

i∈Λ1
Ii andP2 =

⋃
j∈Λ2

Jj . Therefore,Z(R) = P1∪P2. Leta1, a2 ∈ P1. Then there exist
idealsI1, I2 ⊆ P1 such thata1 ∈ I1 anda2 ∈ I2. Since for every idealJj ⊆ P2, Jj(R(a+ b)) ⊆ J(I1 + I2) = (0),
we conclude thatR(a + b) ⊆ P1. Thusa + b ∈ P1. Also, it is easy to see that for everyr ∈ R anda ∈ P1,
ra ∈ P1, soP1 is an ideal. SimilarlyP2 is an ideal. LetP1 ∩ P2 6= (0). SinceP1P2 = (0), (P1 ∩ P2)Z(R) =

(P1 ∩P2)(P1 ∪P2) = (0). ThusZ(R) is an ideal, yielding a contradiction. Therefore,P1 ∩P2 = 0. Now, we show
thatP1 andP2 are prime ideals. Letab ∈ P1 anda, b 6∈ P1. Sinceab ∈ Z(R), a ∈ Z(R) or b ∈ Z(R). Without
loss of generality we assume thata ∈ Z(R). SinceZ(R) = P1 ∪ P2 anda 6∈ P1, we conclude thata ∈ P2. Hence
ab ∈ P2. Sinceab ∈ P1 ∩P2 = (0), ab = 0. If Ra = Rb, thena2 = 0, yielding a contradiction sinceR is a reduced
ring. ThusRa 6= Rb. SinceRa ⊆ P2, Ra ∈ {Jj : j ∈ Λ2}. HenceRb ∈ {Ii : i ∈ Λ1}. ThusRb ∈ P1, yielding
a contradiction sinceb 6∈ P1. Therefore,P1 is a prime ideal. SimilarlyP2 is a prime ideal. So,Z(R) = P1 ∪ P2,
whereP1 andP2 are prime ideals such thatP1 ∩ P2 = (0). �

Theorem 3.2 The following statements are equivalent for a reduced ringR.
(1) gr(AG(R)) = 4.
(2) AG(R) ∼= K|V1|,|V2|, where|V1|, |V2| ≥ 2.
(3) Z(R) is the union of two primesP1 andP2 with intersection(0) and |I(P1)|, |I(P2)| ≥ 3.

Proof. (1) ⇒ (2) First, we show thatdiam(AG(R)) = 2. If diam(AG(R)) = 0 or 1, thenAG(R) is a
complete graph and sogr(AG(R)) is 3 or ∞, yielding a contradiction. Ifdiam(AG(R)) = 3, then there exist
I1, I2, I3, I4 ∈ A(R) such thatI1 − I2 − I3 − I4, I1I3 6= (0), I2I4 6= (0) andI1I4 6= (0). If I1I4 = I2, then since
(I1I4)I2 = (0), (I2)2 = (0), yielding a contradiction. SimilarlyI1I4 6= I3. ThusI2 − I3 − I1I4 − I2 is a cycle
and sogr(AG(R)) = 3, yielding a contradiction. Therefore,diam(AG(R)) = 2. We now show thatAG(R) is a
complete bipartite graph. Sincegr(AG(R)) = 4, there existI, J,K,L ∈ A(R) such thatI − J −K − L− I. We
show thatAG(R) ∼= K|V1|,|V2|, whereV1 = {T ∈ A(R)∗ : T ⊆ Ann(I)} andV2 = {S ∈ A(R)∗ : S * Ann(I)}.
Let T, T1 ∈ V1 andS, S1 ∈ V2. ThenIT = (0) andIS 6= (0). Assume thatTS 6= (0). Sincediam(AG(R)) = 2,
there existsH ∈ A(R) such thatI −H − S. If TS = H or TS = I, then(TS)2 = (0), yielding a contradiction.
Therefore,I − TS − H − I is a cycle, contrary togr(AG(R)) = 4. ThusTS = (0). If TT1 = (0), then
I − T − T1 − I is a cycle, yielding a contradiction. So,TT1 6= (0). Similarly SS1 6= (0). Also V1 ∩ V2 = ∅.
Therefore,AG(R) ∼= K|V1|,|V2| and soAG(R) is a complete bipartite graph, and by Proposition 3.1Z(R) is the
union of two primes with intersection{(0)}.
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(2) ⇒ (1) Clear.
(2) ⇔ (3) It follows from Proposition 3.1. �

Theorem 3.3 The following statements are equivalent for a reduced ringR.
(1) AG(R) is nonempty withgr(AG(R)) = ∞.
(2) There is a vertex which is adjacent to every vertex ofAG(R).
(3) R ∼= K×D, whereK is a field andD is an integral domain.
(4) AG(R) is a star graph.

Proof. (1) ⇒ (2) Suppose to the contrary that there is not a vertex which is adjacent to every vertex ofAG(R).
Therefore, there exist distinct verticesI1, I2, I3, I4 such thatI1 − I2 − I3 − I4, I1I3 6= (0), andI2I4 6= (0). If
I1I4 = (0), thenI1− I2− I3− I4− I1 is a cycle, contrary togr(AG(R)) = ∞. So we may assume thatI1I4 6= (0).
Therefore,I1 − I2 − I3 − I1I4 − I1 is a cycle, contrary togr(AG(R)) = ∞. Therefore, there exists a vertex which
is adjacent to every vertex ofAG(R).

(2) ⇒ (3) It follows from [8, Corollary 2.3].
(3) ⇒ (4) Clear.
(4) ⇒ (1) Clear. �

Theorem 3.4 The following statements are equivalent for a non-reduced ring R.
(1) AG(R) is nonempty withgr(AG(R)) = ∞.
(2) One of the following occurs:
(a) EitherR ∼=

K[x]
(x2)

, whereK is a field orR ∼= L, whereL is a coefficient ring of characteristicp2.

(b) R ∼= R1 × R2 such thatR1 is a field and eitherR2
∼=

K[x]
(x2)

, whereK is a field orR2
∼= L, whereL is a

coefficient ring of characteristicp2.
(c) Z(R) is an annihilating ideal and ifIJ = (0) andI 6= J , thenI = Ann(Z(R)) or J = Ann(Z(R)).
(3) One of the following occurs:
(a)AG(R) ∼= K1.
(b) AG(R) ∼= P4.
(c) AG(R) ∼= K1,n for somen ≥ 1.

Proof. (1) ⇒ (2) SinceR is a non-reduced ring, there exists an idealI such thatI2 = (0). If |I(I)| ≥ 4, then
there exist distinct idealsI1, I2, I3 ∈ I(I), such thatI1 − I2 − I3 − I1 is a cycle and sogr(AG(R)) = 3, yielding
a contradiction. Thus without loss of generality we may assume thatI is a minimal ideal. We have the following
cases:

Case 1: There exists a minimal idealJ such thatI 6= J . Then eitherJ2 = J or J2 = 0. If J2 = (0), then
I − J − (I + J)− I is a cycle, yielding a contradiction. So we may assume thatJ2 = J . Thus by Brauer’s Lemma
(see[10, 10.22]),J = Re for some idempotent elemente ∈ R, soR = Re ⊕ R(1 − e). Therefore,R ∼= R1 × R2.
Suppose that|I(R1)| ≥ 3 and |I(R2)| ≥ 3. Let I1 be a nonzero proper ideal ofR1 andI2 be a nonzero proper
ideal ofR2. Then(I1, 0) − (0, R2) − (R1, 0) − (0, I2) − (I1, 0) is a cycle, yielding a contradiction. So we may
assume that either|I(R1)| = 2 or I(R2) = 2. Without loss of generality we assume that|I(R1)| = 2 and soR1 is a
field. SinceR1 is a field andR is a non-reduced ring, we conclude thatR2 is a non-reduced ring. LetI2 andJ2 be
nonzero ideals ofR2 such thatI2J2 = (0). If I2 6= J2, then(0, I2)− (R1, 0)− (0, J2)− (0, I2) is a cycle, contrary
to gr(AG(R)) = ∞. Thus|A(R2)| = 3. By [2, Remark 10] eitherR2

∼=
K[x]
(x2)

, whereK is a field orR2
∼= L, where

L is a coefficient ring of characteristicp2.
Case 2: I is the unique minimal ideal ofR. Suppose that there existsK ∈ A(R)∗ such thatIK 6= (0). Since

K ∈ A(R)∗, there existsJ ∈ A(R)∗ such thatKJ = (0). If IJ 6= (0), then sinceI is minimal ideal,IJ = I.
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HenceIK = (IJ)K = I(JK) = (0), yielding a contradiction. Therefore,IJ = (0). SinceJK = (0) and
IK 6= (0), I * J . SinceI is the unique minimal ideal ofR andI * J , there existsJ1 ⊆ J such thatJ1 6= I. Hence
I − J1 − K − J2 − I is a cycle and sogr(AG(R)) = 3, contrary togr(AG(R)) = ∞. Therefore, we must have
IK = (0) for everyK ∈ A(R)∗. ThusIZ(R) = (0). Now, we have two subcases:

Subcase 2-1: Ann(Z(R)) 6= I. If |I(Z(R))| ≥ 4, then there existsS ∈ A(R)∗ such thatI 6= S 6= Ann(Z(R))

and soI − Ann(Z(R)) − S − I is a cycle, yielding a contradiction. So we may assume that|A(R)| = 3. Thus
A(R)∗ = {I,Ann(Z(R))}.

Subcase 2-2: I = Ann(Z(R)). If |A(R)∗| = 1, then by [2, Remark 10] eitherR ∼=
K[x]
(x2) , whereK is a field or

R ∼= L, whereL is a coefficient ring of characteristicp2. So we may assume that|A(R)∗| ≥ 2. LetS, J ∈ A(R)∗

such thatSJ = (0) andS 6= J . If S 6= I andJ 6= I, thenI − S − J − I is a cycle, yielding a contradiction.
Therefore,S = I = Ann(Z(R)) or J = I = Ann(Z(R)).

(2)⇒ (3) If eitherR ∼=
K[x]
(x2)

, whereK is a field orR ∼= L, whereL is a coefficient ring of characteristicp2, then
AG(R) ∼= K1.

If R ∼= R1×R2 such thatR1 is a field and eitherR2
∼=

K[x]
(x2)

, whereK is a field orR2
∼= L, whereL is a coefficient

ring of characteristicp2, thenR2 has a non-trivial ideal sayI, andAG(R) ∼= (R1, I)− (0, I)− (R1, 0)− (0, R2) ∼=

P4.
Let Z(R) is an annihilating ideal and ifIJ = (0) (I 6= J), thenI = Ann(Z(R)) or J = Ann(Z(R)). Then

every annihilating ideal is only adjacent toI and so eitherAG(R) ∼= K1 orAG(R) ∼= K1,n for somen ≥ 1.
(3) ⇒ (1) Clear. �

Theorem 3.5 The following statements are equivalent for a non-reduced ring R.
(1) AG(R) is nonempty withgr(AG(R)) = 4.
(2) R ∼= R1 × R2, where eitherR1

∼=
K[x]
(x2) , whereK is a field orR1

∼= L, whereL is a coefficient ring of

characteristicp2 andR2 is an integral domain which is not a field.
(3) AG(R) is isomorphic to Figure 1.

Proof. (1) ⇒ (2) SinceR is a non-reduced ring, there exists an idealI such thatI2 = (0). If |I(I)| ≥ 4, then there
exist distinct idealsI1, I2, I3 ∈ I(I)∗, such thatI1 − I2 − I3 − I1 = (0) is a cycle and sogr(AG(R)) = 3, yielding
a contradiction. Without loss of generality we may assume that I is a minimal ideal. We first show that there exist
distinct idealsI1, I2, I3 ∈ A(R)∗ such thatI1 − I2 − I3 − I − I1 is a cycle inAG(R). Sincegr(AG(R)) = 4,
there exist distinct idealsI1, I2, I3, I4 ∈ A(R)∗ such thatI1 − I2 − I3 − I4 − I1. Assume thatI = Ii for some
i. Without loss of generality assume thati = 4. ThenI1 − I2 − I3 − I − I1 is a cycle inAG(R). So we may
assume thatIi 6= I for all 1 ≤ i ≤ 4. If I * Ii for all 1 ≤ i ≤ 4, thenIIi = (0). HenceI − I1 − I2 − I is a
cycle, yielding a contradiction. Therefore, there existsi such thatI ⊆ Ii. Without loss of generality assume that
i = 4. ThusI1 − I2 − I3 − I − I1 is a cycle inAG(R). If II2 = (0), thenI − I1 − I2 − I is a cycle inAG(R),
yielding a contradiction. ThusII2 6= (0) and sinceI is a minimal ideal,I ⊆ I2. Suppose thatAnn(I) ∩ I2 6= I.
If (Ann(I) ∩ I2) 6= I3, then I − (Ann(I) ∩ I2) − I3 − I is a cycle inAG(R), yielding a contradiction. If
Ann(I)∩I2 = I3, thenI−(Ann(I)∩I2)−I1−I is a cycle inAG(R), yielding a contradiction. Thus we can assume
thatAnn(I) ∩ I2 = I. Let 0 6= z ∈ I. ThenRz = I. SinceRz ∼= R/Ann(z) andRz is a minimal ideal ofR, we
conclude thatAnn(z) = Ann(I) is a maximal ideal. SinceII2 6= (0), I2 * Ann(I). Therefore,Ann(I) + I2 = R.
Thus there existx ∈ Ann(z) andy ∈ I2 such thatx+ y = 1. SinceAnn(I) ∩ I2 = I, (Rx)∩ (Ry) ⊆ I ⊆ nil(R).
If x ∈ nil(R), then there exists a positive integern such thatxn = 0. Therefore,(x + y)n ∈ (Ry), contrary to
x + y = 1. Thusx 6∈ nil(R). Similarly y 6∈ nil(R). Note thatxy ∈ (Rx) ∩ (Ry) ⊆ nil(R), we obtain that
x2+nil(R) = (x2+xy)+nil(R) = x(x+ y)+nil(R) = x+nil(R). Thusx+nil(R) is a nontrivial idempotent
in R/nil(R) and hence by [11, Corollary, p.73]R has a nontrivial idempotent. SinceR has a nontrivial idempotent,
R ∼= R1×R2. Note thatR is a non-reduced ring, so eitherR1 orR2 is a non-reduced ring. Without loss of generality
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assume thatR1 is a non-reduced ring. Suppose thatI1 andI2 are ideals ofR1 such thatI1I2 = (0). If I1 6= I2, then
(0, R2)− (I1, 0)− (I2, 0)− (0, R2) is a cycle inAG(R), yielding a contradiction. ThusI1 = I2. We conclude that
|A(R1)

∗| = 1. Thus by [2, Remark 10], eitherR1
∼=

K[x]
(x2) , whereK is a field orR1

∼= L, whereL is a coefficient

ring of characteristicp2. We have the following cases:
Case 1: R2 is an integral domain. IfR2 is a field then it is easy to see thatAG(R) is a star graph, yielding a

contradiction sincegr(AG(R)) = 4. Therefore,R2 is an integral domain which is not a field.
Case 2: R2 is not an integral domain. Then there existI2, J2 ∈ A(R2)

∗ such thatI2J2 = (0). Since|A(R1)
∗| =

1, there existsI1 ∈ A(R1)
∗ such that(I1)

2 = (0). Thus(I1, 0) − (I1, J2) − (0, I2) − (I1, 0) is a cycle inAG(R),
yielding a contradiction. Therefore, this case is impossible.

(2) ⇒ (3) Let I be the only nontrivial ideal ofR1. ThenAG(R) is isomorphic to Figure 1.
(3) ⇒ (1) Clear. �

(I, 0)(R1, 0)

. . . . . .

(I,R2)

Figure 1

4 A Relation Between the Smarandache Vertices, Girth, and Diameter of the
Annihilating-ideal Graphs

The concept of aSmarandache vertexin a (simple) graph was first introduced by Rahimi [13] in order to study
the Smarandache zero-divisorsof a commutative ring which was introduced by Vasantha Kandasamy in [14] for
semigroups and rings (not necessarily commutative). A non-zero elementa in a commutative ringR is said to
be a Smarandache zero-divisor if there exist three different nonzero elementsx, y, andb (6= a) in R such that
ax = ab = by = 0, but xy 6= 0. This definition of a Smarandache zero-divisor (which was given in [13]) is
slightly different from the definition of Vasantha Kandasamy in [14], where in her definitionb could also be equal
to a. In this section, we provide some examples and facts about the Smarandache vertices (orS-verticesfor short)
of AG(R). First, we define the notion of a Smarandache vertex in a simple graph and provide several (in particular,
graph-theoretic) examples (see Lemmas 4.1, 4.4, and Proposition 4.5). Also we provide some more ring-theoretic
examples as well.
Definition. A vertexa in a simple graphG is said to be a Smarandache vertex (or S-vertex for short) provided that
there exist three distinct verticesx, y, andb (6= a) in G such thata —x, a—b, andb—y are edges inG; but there is
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no edge betweenx andy.
Note that a graph containing a Smarandache vertex should have at least four vertices and three edges, and also

the degree of each S-vertex must be at least 2. The proofs of the next two lemmas (Lemma 4.1 and Lemma 4.4) are
not difficult and can be followed directly from the definitionand we leave them to the reader. Recall that for a graph
G, a complete subgraph of G is called aclique. Theclique number, ω(G), is the greatest integern ≥ 1 such that
Kn ⊆ G, andω(G) is infinite if Kn ⊆ G for all n ≥ 1. Thechromatic numberχ(G) of a graphG is defined to be
the minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices have
the same color. A graph is calledweakly perfectif its chromatic number equals its clique number.

Lemma 4.1 The following statements are true for the given graphs:

(1) A complete graph does not have any S-vertices.

(2) A star graph does not have any S-vertices.

(3) A complete bipartite graph has no S-vertices.

(4) LetG be a completer-partite graph (r ≥ 3) with partsV1, V2, . . . , Vr. If at least one part, sayV1, has at least
two elements, then every element not inV1 is an S-vertex. Further, if there exist at least two parts ofG such
that each of which has at least two elements, then every element ofG is an S-vertex.

(5) A bistar graph has two Smarandache vertices; namely, the center of each star. A bistar graph is a graph
generated by two star graphs when their centers are joined.

(6) Every vertex in a cycle of size greater than or equal to five in agraph is an S-vertex provided that there is
no edge between the nonneighbouring vertices. In particular, every vertex in a cyclic graphCn of size larger
than or equal to 5 is a Smarandache vertex. Note that for odd integersn ≥ 5, χ(Cn) = 3 andω(Cn) = 2;
and for even integersn ≥ 5, χ(Cn) = ω(Cn) = 2.

(7) LetG be a graph containing two distinct verticesx andy such thatd(x, y) = 3. ThenG has an S-vertex. But
the converse is not true in general. SupposeG is the graphx—a, a—b, b—y, anda—y; where obviously,a
is an S-vertex andd(x, y) = 2. Note that if diameter ofG is 3, then it has an S-vertex since there exist two
distinct verticesx andy in G such thatd(x, y) = 3.

Example 4.2 In [8, Corollary 2.3], it is shown that for any reduced ringR, AG(R) is a star graph if and only if
R ∼= F ×D, whereF is a field andD is an integral domain. In this case,AG(R) has no Smarandache vertices.

Example 4.3 In [9, Lemma 1.8] it is shown that for any reduced ringR with finitely many minimal primes,
diam(AG(R)) = 3 providedR has more than two minimal primes. Thus by Lemma 4.1(7),AG(R) has an S-
vertex. This also could be an example of a weakly perfect graph containing an S-vertex since by [9, Corollary 2.11],
AG(R) is weakly perfect for any reduced ringR (see also Proposition 4.5, Remark 4.6, and Example 4.7).

Lemma 4.4 LetC be a clique in a graphG such that|C| ≥ 3. Suppose thatx is a vertex inG \ C andx makes a
link with at least one vertex or at most|C| − 2 vertices ofC, then every vertex ofC is an S-vertex. In other case, if
x makes links with|C| − 1 vertices ofC, then all those|C| − 1 vertices are S-vertices.

Proposition 4.5 LetG be a connected graph whose clique number is strictly larger than 2. Ifω(G) 6= χ(G), then
G has an S-vertex. In other words, for any connected graphG withω(G) ≥ 3 and no S-vertices, thenω(G) = χ(G)

(i.e.,G is weakly perfect).
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Proof. Let C be a (largest) clique inG with |C| ≥ 3. Sinceω(G) 6= χ(G), thenG is not a complete graph. Thus,
there exists a vertexx ∈ G \ C which makes edge(s) with at least one or at mostω(G)− 1 elements ofC. Now the
proof is immediate from Lemma 4.4.

Remark 4.6 In the next example we show that The converse of the above proposition need not be true in general.
Also None of the graphs in Parts (1), (2), and (3) of Lemma 4.1,has an S-vertex whereω(G) = χ(G). Note that
each of the graphs in Parts (2) and (3) hasω(G) = χ(G) = 2. The graph in Part (5) has two S-vertices and
ω(G) = χ(G) = 2. See also Part (6) of Lemma 4.1.

Example 4.7 As in [9, Proposition 2.1], let

R = Z4[X,Y,Z]/(X2 − 2, Y 2 − 2, Z2, 2X, 2Y, 2Z,XY,XZ, Y Z − 2)

be a ring andC = {(2), (x), (y), (y + z)} a clique inAG(R). Since(z) /∈ C and it does not make a link with all
the elements ofC, then by Lemma 4.4,C contains an S-vertex. Hence by [9, Proposition 2.1], this isan example of
a weakly perfect graph containing a Smarandache vertex withχ(AG(R)) = ω(AG(R)) = 4 ≥ 3.

Remark 4.8 Conjecture 0.1 in [9] states thatAG(R) is weakly perfect for any ringR. Now from Proposition 4.5,
this conjecture is true for any ringR with ω(AG(R)) ≥ 3 andAG(R) containing no S-vertices. Note that [9,
Corollary 2.11] proves the validity of this conjecture for any reduced ringR.

Proposition 4.9 Let{I1, I2, . . . , In} be a clique inAG(R) with n ≥ 3. Then

(1) AG(R) containsn S-vertices provided thatI2i 6= (0) andI2j 6= (0) for some1 ≤ i 6= j ≤ n.

(2) AG(R) containsn S-vertices provided thatI2i 6= (0) andIj 6⊆ Ii for some1 ≤ i 6= j ≤ n.

(3) AG(R) containsn S-vertices provided thatI2j 6= (0) andIi 6⊆ Ij for some1 ≤ i 6= j ≤ n.

(4) AG(R) containsn S-vertices provided thatR is a reduced ring.

Proof. We just prove Part (1) and leave the other parts to the reader.Without loss of generality suppose that
I21 6= (0) andI22 6= (0). Now the proof follows from Lemma 4.4 and the fact thatI1 + I2 is a vertex different from
all vertices of the clique and makes a link with each of them exceptI1 andI2. Note thatI1 + I2 6= R. Otherwise,
I3 = I3R = I3I1 + I3I2 = (0) which is a contradiction.

Lemma 4.10 LetR = R1 ×R2 × · · · ×Rn be the direct product ofn ≥ 2 rings. IfAG(R) has no S-vertices, then
n = 2 andR = R1 ×R2, where each of the ringsR1 andR2 is an integral domain.

Proof. Without loss of generality supposen = 3. Let C = {I1, I2, I3}, whereI1 = R1 × (0) × (0), I2 =

(0) ×R2 × (0), andI3 = (0) × (0)×R3. ClearlyC is a clique inAG(R). LetA = (0)×R2 ×R3. Now Lemma
4.4 implies the existence of an S-vertex inAG(R) which is a contradiction. Hencen = 2 andR = R1 ×R2.
Now suppose thatR2 is not an integral domain. Thus, there exist two nonzero proper idealsI andJ in R2 such that
IJ = (0). Therefore,

(0, R2)—(R1, 0)—(0, I)—(R1 , J)

implies the existence of an S-vertex, yielding a contradiction. ThusR2 and similarlyR1 are integral domains.

Proposition 4.11 LetR be a commutative ring. Then
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(1) If R is a non-local Artinian ring, thenAG(R) has no S-vertices if and only ifR = F1 × F2 where each ofF1

andF2 is a field.

(2) LetR be an Artinian ring withgr(AG(R)) = 4. ThenR can not be a local ring.

Proof. Part (1) is an immediate consequence of Proposition 4.10 andthe fact that any Artinian ring is a finite
direct product of local rings [?, Theorem 8.7]. For Part (2), suppose(R,M) is an Artinian local ring. Thus by [12,
Theorem 82],M = Ann(x) for some0 6= x ∈ M . HenceI = Rx is an ideal which is adjacent to every nonzero
proper ideal ofR. Now sinceAG(R) contains a cycle, there exist two verticesJ andK such thatI − J −K − I.
This is impossible sincegr(AG(R)) = 4. ThusR can not be a local ring.

Lemma 4.12 LetR be a reduced ring such thatΓ(R) contains an S-vertex. ThenAG(R) has an S-vertex. Thus the
number of S-vertices ofΓ(R) is less than or equal to the number of S-vertices ofAG(R) for any reduced ring.

Proof. Let a − x − y − b be a path of length 3 inΓ(R) such thatx is an S-vertex inΓ(R). Clearlyab 6= 0 by
definition. ThusRa−Rx−Ry−Rb is a path of length 3 inAG(R) sinceR is reduced. ThereforeRx is an S-vertex
in AG(R) by definition.

Theorem 4.13 The following are true for a reduced ringR.

(1) AssumeR containsk ≥ 3 distinct minimal prime ideals. Then each ofΓ(R) andAG(R) has an S-vertex.

(2) LetZ(R) be the union of two primes with intersection(0). ThenAG(R) has no S-vertices.

(3) If gr(AG(R)) = 4, thenAG(R) has no S-vertices.

(4) Suppose thatAG(R) is nonempty withgr(AG(R)) = ∞. ThenAG(R) has no S-vertices.

Proof. We just prove Part (1) since the other three parts are immediate from Lemma 4.1 and Proposition 3.1,
Theorem 3.2, and Theorem 3.3 respectively. SinceR is reduced, thennil(R) = (0) = ∩Pi for 1 ≤ i ≤ k,
wherenil(R) is the ideal of all nilpotent elements ofR. Let ai be inPi \ ∪Pj for all 1 ≤ j 6= i ≤ k. Clearly
a1a2a3 · · · ak = 0. Let x = a2a3 · · · ak andy = a1a3a4 · · · ak. Now by hypothesis, it is easy to see thata1, x, y,
anda2 are all distinct and nonzero elements ofR anda1x = xy = ya2 = 0 with a1a2 6= 0. Therefore,x andy are
S-vertices inΓ(R). Now the proof is complete by Lemma 4.12.

Remark 4.14 From Lemma 4.1(7), it is clear that ifΓ(R) [resp.AG(R)] contains no S-vertices, thendiam(Γ(R)) 6=

3 [resp. diam(AG(R)) 6= 3]. In other words,diam(Γ(R)) ≤ 2 [resp. diam(AG(R)) ≤ 2] since the diameter of
each of these graphs is less than or equal to 3. Also, Proposition 1.1 of [9] provides a relation between the diameters
of Γ(R) andAG(R). Consequently, combining the results of [9, Proposition 1.1] and existence (nonexistence) of
S-vertices of these graphs may provide a relation between the S-vertices and diameters ofΓ(R) andAG(R). For
example, ifAG(R) contains no S-vertices, thendiam(AG(R)) 6= 3 which by [9, Proposition 1.1(d)], it implies
diam(Γ(R)) 6= 3. Notice that [9, Proposition 1.1(d)] states that ifdiam(Γ(R)) = 3, thendiam(AG(R)) = 3.

Theorem 4.15 The following are true for a commutative ringR.

(1) Letgr(AG(R)) = 4 andI − J −K −L− I be a cycle inAG(R) such thatI2 6= 0. ThenAG(R) is complete
bipartite whenAG(R) has no S-vertices.

(2) If AG(R) is complete bipartite, then(AG(R) has no S-vertices withgr(AG(R)) = 4 or ∞.

10



Proof. We just give a proof for Part (1) since the other part is obvious. Clearly,diam(AG(R)) 6= 3 sinceAG(R)

has no S-vertices. Ifdiam(AG(R)) = 0 or 1, thenAG(R) is a complete graph and sogr(AG(R)) is 3 or ∞,
yielding a contradiction. Therefore,diam(AG(R)) = 2. We now show thatAG(R) is a complete bipartite graph.
Sincegr(AG(R)) = 4, there existI, J,K,L ∈ AG(R) such thatI−J−K−L−I with I2 6= (0) by hypothesis. We
show thatAG(R) ∼= K|V1|,|V2|, whereV1 = {T ∈ A(R)∗ : T ⊆ Ann(I)} andV2 = {S ∈ A(R)∗ : S * Ann(I)}.
Let T, T1 ∈ V1 andS, S1 ∈ V2. ThenIT = (0) andIS 6= (0). Assume thatTS 6= (0). Sincediam(AG(R)) = 2,
there existsH ∈ A(R)∗ such thatI − H − S. Clearly, TS 6= (0) implies thatT is not contained inH and
T 6= H. If TH = (0), thengr(AG(R)) = 3, yielding a contradiction. AlsoT is not a proper subset ofS since
TH 6= (0). ThusI is an S-vertex inAG(R) which is a contradiction. ThereforeTS = (0). If TT1 = (0), then
I − T − T1 − I is a cycle, yielding a contradiction. So,TT1 6= (0). Similarly SS1 6= (0). Also V1 ∩ V2 = ∅.
Therefore,AG(R) ∼= K|V1|,|V2| and soAG(R) is a complete bipartite graph.
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