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An introduction to the theory of algebraic
multi-hyperring spaces

Kostaq Hila and Bijan Davvaz

Abstract

A Smarandache multi-space is a union of n different spaces equipped
with some different structures for an integer n ≥ 2 which can be used
both for discrete or connected spaces, particularly for geometries and
spacetimes in theoretical physics. In this paper, applying the Smaran-
daches notion and combining this with hyperrings in hyperring theory,
we introduce the notion of multi-hyperring space and initiate a study of
multi-hyperring theory. Some characterizations and properties of multi-
hyperring spaces are investigated and obtained. Some open problems
are suggested for further study and investigation.

1 Introduction and preliminaries

The applications of mathematics in other disciplines, for example in informat-
ics, play a key role and they represent, in the last decades, one of the purpose
of the study of the experts of hyperstructures theory all over the world. Hyper-
structures, as a natural extension of classical algebraic structures, in particular
hypergroups, were introduced in 1934 by the French mathematician, Marty,
at the 8th Congress of Scandinavian Mathematicians [16]. Since then, a lot of
papers and several books have been written on this topic. Nowadays, hyper-
structures have a lot of applications to several domains of mathematics and
computer science(see [2, 19]) and they are studied in many countries of the
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world. This theory has been subsequently developed by Corsini [2], Mittas
[14], and by various authors. Basic definitions and propositions about the hy-
perstructures are found in [1, 2, 5, 19]. Krasner [13] has studied the notion of
hyperfields, hyperrings, and then some researchers, namely, Davvaz [3, 7, 10],
Vougiouklis [19, 20] and others followed him.

Hyperrings are essentially rings with approximately modified axioms.
There are different notions of hyperrings (R,+, ·). If the addition + is a hyper-
operation and the multiplication · is a binary operation, then the hyperring is
called Krasner (additive) hyperring [13]. In 2007, Davvaz and Leoreanu-Fotea
[5] published a book titled Hyperring Theory and Applications.

A Smarandache multi-space is a union of n different spaces equipped with
some different structures for an integer n ≥ 2, which can be used both for
discrete or connected spaces, particularly for geometries and spacetimes in
theoretical physics. The notion of multi-spaces was introduced by Smaran-
dache under his idea of hybrid mathematics: combining different fields into
a unifying field [17, 18], which is more closer to our real life world. Today,
this idea is widely accepted by the world of sciences (cf. [15]). In this paper,
applying the Smarandaches notion and combining this with hyperrings in hy-
perring theory, we introduce the notion of multi-hyperring space and initate
a study of multi-hyperring theory. Some characterizations and properties of
multi-hyperring spaces are investigated and obtained. Some open problems
are suggested for futher study and investigation.

Recall first the basic terms and definitions from the hyperstructure theory.
In a classical algebraic structure, the composition of two elements is an ele-
ment, while in an algebraic hyperstructure, the composition of two elements
is a set.

An algebraic hyperstructure is a non-empty set H together with a map
◦ : H × H → P∗(H) called hyperoperation or join operation, where P∗(H)
denotes the set of all non-empty subsets of H. A hyperstructure (H, ◦) is
called a semihypergroup if for all x, y, z ∈ H, (x ◦ y) ◦ z = x ◦ (y ◦ z), which
means that ⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v.

If x ∈ H and A,B are nonempty subsets of H then

A ◦B =
⋃

a∈A,b∈B
a ◦ b, A ◦ x = A ◦ {x}, and x ◦B = {x} ·B.

A non-empty subset B of a semihypergroup H is called a
sub-semihypergroup of H if B ◦ B ⊆ B and H is called in this case super-
semihypergroup of B. Let (H, ◦) be a semihypergroup. Then H is called a hy-
pergroup if it satisfies the reproduction axiom, for all a ∈ H, a◦H = H◦a = H.
An element e in a semihypergroup H is called identity if



AN INTRODUCTION TO THE THEORY OF ALGEBRAIC MULTI-HYPERRING
SPACES 61

x ◦ e = e ◦ x = {x},∀x ∈ H.

An element 0 in a semihypergroup H is called zero element if

x ◦ 0 = 0 ◦ x = {0},∀x ∈ H.

A non-empty set H with a hyperoperation + is said to be a canonical
hypergroup if the following conditions hold:

1. for every x, y ∈ H,x+ y = y + x,

2. for every x, y, z ∈ H,x+ (y + z) = (x+ y) + z,

3. there exists 0 ∈ H, (called neutral element of H) such that 0 + x =
{x} = x+ 0 for all x ∈ H,

4. for every x ∈ H, there exists a unique element denoted by −x ∈ H such
that 0 ∈ x+ (−x) ∩ (−x) + x,

5. for every x, y, z ∈ H, z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

For any subset A of a canonical hypergroup H, −A denotes the set {−a :
a ∈ A}. A non-empty subset N of a canonical hypergroup H is called a subhy-
pergroup of H if N is a canonical hypergroup under the same hyperoperation
as that of H. Equivalently, for every x, y ∈ N, x − y ⊆ N . In particular, for
any x ∈ N, x− x ⊆ N . Since 0 ∈ x− x, it follows that 0 ∈ N .

Example 1. [1, 5]

(1) Let C(n) = {e0, e1, ..., ek(n)}, where k(n) = n/2 if n is an even natural
number and k(n) = (n − 1)/2 if n is an odd natural number. For all
es, et of C(n), define es ◦ et = {ep, ev},where p = min{s+ t, n− (s+ t)},
v = |s− t|. Then (C(n), ◦) is a canonical hypergroup.

(2) Let (S, T ) be a projective geometry, i.e., a system involving a set S of
elements called points and a set T of sets of points called lines, which
satisfies the following postulates:

• Any lines contains at least three points;
• Two distinct points a, b are contained in a unique line, that we

shall denote by L(a, b);
• If a, b, c, d are distinct points and L(a, b) ∩ L(c, d) 6= ∅, then

L(a, c) ∩ L(b, d) 6= ∅.
Let e be an element which does not belong to S and let S′ = S ∪ {e}.
We define the following hyperoperation on S′:

• For all different points a, b of S, we consider a ◦ b=L(a, b)\{a, b};
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• If a ∈ S and any line contains exactly three points, let a ◦ a={e},
otherwise a ◦ a={a, e};
• For all a ∈ S′, we have e ◦ a = a ◦ e = a.

Then (S′, ◦) is a canonical hypergroup.

Algebraic hyperstructure theory has many applications in other disciplines.
In [6], inheritance issue based on genetic information is looked at carefully via
a new hyperalgebraic approach. Several examples are provided from different
biology points of view, and it is shown that the theory of hyperstructures
exactly fits the inheritance issue. In [12], the authors used the concept of
algebraic hyperstructures in the F2-genotypes with cross operation.

A physical example of hyperstructures associated with the elementary par-
ticle physics is presented in [11]. The theory of algebraic hyperstructures al-
lows us to expand the group theory to much more sets of objects. In [11],
the authors have shown the Leptons set, as an important group of elementary
particles, along with a hyperoperation form a hyperstructure. The hyperop-
eration is the interaction between the Leptons considering the conservation
rules. This theory is a new overlook to the elementary particle physics and
helps us to make a new arrangement to the elementary particles.

Another applications of algebraic hyperstructures is in Chemistry. In [7, 8,
9], Davvaz et al. presented examples of algebraic hyperstructures associated
with chain reactions and dismutation reactions.

There are several kinds of hyperrings that can be defined on a non-empty
set R. In what follows, we shall consider one of the most general types of
hyperrings.

Definition 1.1. A hyperring is a triple (R,+, ·), where R is a non-empty set
with a hyperaddition + and a hypermultiplication · satisfying the following
axioms:

1. (R,+) is a canonical hypergroup,

2. (R, ·) is a semihypergroup such that x ·0 = 0 ·x = {0} for all x ∈ R, (i.e,
0 is a bilaterally absorbing element),

3. The hypermultiplication · is distributive with respect to the hyperoper-
ation +. That is, for every x, y, z ∈ R, x · (y + z) = x · y + x · z, and
(x+ y) · z = x · z + y · z.

Definition 1.2. A non-empty subset R′ of R is called a subhyperring of
(R,+, ·) if (R′,+) is a subhypergroup of (R,+) and ∀x, y ∈ R′, x · y ∈ P∗(R′).
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Example 2. Let R = {0, a, b} be a set with two hyperoperations defined as
follows.

+ 0 a b
0 {0} {a} {b}
a {a} {a, b} R
b {b} R {a, b}

· 0 a b
0 {0} {0} {0}
a {0} R R
b {0} R R

Clearly, (R,+, ·) is a hyperring.

Example 3. Let (R,+, ·) be a hyperring. Then (Mn(R),⊕,�) is a hyperring,
where Mn(R) is the set of all n× n matrices over R for some natural number
n and the hyperoperations ⊕ and � are defiend as follows:

For x = (xij), y = (yij) ∈Mn(R),

x⊕ y = {z ∈Mn(R) : z = (zij), zij ∈ xij + yij , 1 ≤ i, j ≤ n} and

x� y = {z ∈Mn(R) : z = (zij), zij ∈
n∑

k=1

xik · ykj , 1 ≤ i, j ≤ n}.

If there exists u ∈ R such that x · u = u · x = {x} for all x ∈ R, then u is
called the scalar unit of R and is denoted by 1. The element 0 is called the
zero element of R if 0 · x = x · 0 = {0} for all x ∈ R.

A non-empty subset A of R is called a hyperideal of (R,+, ·) if (A,+) is a
subhypergroup of (R,+) and ∀x ∈ R,∀y ∈ A, both x · y and y ·x are elements
of P∗(A).

A hyperring R is said to satisfy the ascending (resp. descending) chain
condition if for every ascending (resp. descending) sequence A1 ⊆ A2 ⊆ A3 ⊆
. . . (resp. A1 ⊇ A2 ⊇ A3 ⊇ . . .) of hyperideals of R, there exists a natural
number n such that An = Ak for all n ≥ k. If R satisfies the ascending
(resp. descending) chain condition, we say R is a Noetherian (resp. Artinian)
hyperring.

A non-empty subset Q of R is said to be a quasi-hyperideal of (R,+, ·) if
(Q,+) is a subhypergroup of (R,+) and Q·R∩R ·Q ⊆ Q. A non-empty subset
B of R is said to be a bi-hyperideal of (R,+, ·) if (B,+) is a subhypergroup of
(R,+) and B ·R ·B ⊆ B. A hyperring R is said to be regular if for all x ∈ R,
there is a a ∈ R such that x ∈ x · a · x.

2 Introduction of multi-hyperring spaces

The notion of multi-spaces is introduced by Smarandache in [18] under an
idea of hybrid mathematics: combining different fields into a unifying field
[17], which can be formally defined with mathematical words by the following
definition. Today, this idea is widely accepted by the world of sciences.
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Definition 2.1. For any integer i, 1 ≤ i ≤ n let Ai be a set with ensemble of
law Li, denoted by (Ai;Li). Then the union of (Ai;Li), 1 ≤ i ≤ n

Ã =
n⋃

i=1

(Ai;Li),

is called a multi-space.

The conception of multi-hypergroup space is a generalization of the alge-
braic hypergroup. By combining the above Smarandache multi-spaces with
hypergroups in hyperstructure theory, a new kind of algebraic hyperstructure
called multi-hypergroup space is found, the definition of which is given as
follows.

Definition 2.2. Let G̃ =
m⋃
i=1

Gi be a complete multi-space with a binary

hyperoperation set O(G̃) = {×i, 1 ≤ i ≤ m}. If for any integers i, 1 ≤ i ≤
m, (Gi;×i) is a hypergroup and ∀x, y, z ∈ G̃ and any two binary hyperoper-
ations × and ◦, × 6= ◦, there is one hyperoperation for example the hyper-
operation × satisfying the distribution law to the hyperoperation ◦ if their
hyperoperation results exist, i.e.,

x× (y ◦ z) = (x× y) ◦ (x× z),
and

(y ◦ z)× x = (y × x) ◦ (z × x),

then G̃ is called a multi-hypergroup space.

Remark 1. If m = 1, then G̃ = (G1;×1) is just a hypergroup.

Example 4. Let (S, ◦) be an algebraic hyperstructure, i.e., a◦b ⊆ S, ∀a, b ∈ S.
Whence, let we take C,C ⊆ S being a cyclic hypergroup. Now consider a
partition of S

S =
m⋃

k=1

Gk

with m ≥ 2 such that Gi ∩Gj = C,∀i, j, 1 ≤ i, j,≤ m.
For an integer k, 1 ≤ k ≤ m, assume that Gk = {gk1, gk2, . . . , gkl}. We

define a hyperoperation ×k on Gk as follows, which enables (Gk,×k) to be a
cyclic hypergroup.

gk1 ×k gk1 = {gk1, gk2},
gk2 ×k gk1 = {gk1, gk3},

...
gk(l−1) ×k gk1 = {gk1, gkl},

gkl ×k gk1 = {gk1}.
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Then, S =
m⋃

k=1

Gk is a complete multi-hyperspace with m+1 hyperoperations.

Now, by combining these Smarandache multi-spaces with hyperrings in
hyperstructure theory, a new kind of algebraic hyperstructure called multi-
hyperring spaces is found, the definition of which is given as follows.

Definition 2.3. Let R̃ =
m⋃
i=1

Ri be a complete multi-space with a double

binary hyperoperation set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers
i, j, i 6= j, 1 ≤ i, j ≤ m, (Ri; +i,×i) is a hyperring and ∀x, y, z ∈ R̃,

(x+i y) +j z = x+i (y +j z), (x×i y)×j z = x×i (y ×j z)

and

x×i (y +j z) = x×i y +j x×i z, (y +j z)×i z = y ×i x+j z ×i x

provided all these hyperoperations result exists, then R̃ is called a multi-
hyperring space. If for any integer 1 ≤ i ≤ m, (R; +i,×i) is a hyperfield,
then R̃ is called a multi-hyperfield space.

For a multi-hyperring space R̃ =
m⋃
i=1

Ri, let S̃ ⊂ R̃ and O(S̃) ⊂ O(R̃). If S̃

is also a multi-hyperring space with a double binary hyperoperation set O(S̃),
then S̃ is said a multi-hyperring subspace of R̃.

The main object of this paper is to characterize multi-hyperring spaces.

3 Characterizations of multi-hyperring spaces

The following theorem gives a criteria of being multi-hyperring subspace of a
multi-hyperring space.

Theorem 3.1. For a multi-hyperring space R̃ =
m⋃
i=1

Ri, a subset S̃ ⊂ R̃

with a double binary hyperoperation set O(S̃) ⊂ O(R̃) is a multi-hyperring
subspace of R̃ if and only if for any integer k, 1 ≤ k ≤ m, (S̃ ∩Rk; +k,×k) is
a subhyperring of (Rk; +k,×k) or S̃ ∩Rk = ∅.

Proof. For any integer k, 1 ≤ k ≤ m, if (S̃ ∩ Rk; +k,×k) is a subhyperring of

(Rk; +k,×k) or S̃ ∩ Rk = ∅, then since S̃ =
m⋃
i=1

(S̃ ∩ Ri), we know that S̃ is a

multi-hyperring subspace by definition of multi-hyperring spaces.
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Now, if S̃ =
s⋃

j=1

Sij is a multi-hyperring subspace of R̃ with a double

binary hyperoperation set O(S̃) = {(+ij ,×ij ), 1 ≤ j ≤ s}, then (Sij ; +ij ,×ij )
is a subhyperring of (Rij ; +ij ,×ij ). Therefore, for any integer j, 1 ≤ j ≤
s, Sij = Rij ∩ S̃. But for other integer l ∈ {i : 1 ≤ i ≤ m}\{ij ; 1 ≤ j ≤ s},
S̃ ∩ Sl = ∅.

Theorem 3.2. For a multi-hyperring space R̃ =
m⋃
i=1

Ri, a subset S̃ ⊂ R̃

with a double binary hyperoperation set O(S̃) ⊂ O(R̃) is a multi-hyperring
subspace of R̃ if and only if for any double binary hyperoperations (+j ,×j) ∈
O(S̃), (S̃ ∩Rj ; +j) ≺ (Rj ; +j) and (S̃;×j) is complete.

Proof. By Theorem 3.1, we have that S̃ is a multi-hyperring subspace if and
only if for any integer i, 1 ≤ i ≤ m, (S̃ ∩ Ri; +i,×i) is a subhyperring of
(Ri; +i,×i) or S̃ ∩ Ri = ∅. It is clear that (S̃ ∩ Ri; +i,×i) is a subhyperring
of (Ri; +i,×i) if and only if for any double binary hyperoperation (+j ,×j) ∈
O(S̃), (S̃ ∩ Rj ; +j) ≺ (Rj ; +j) and (S̃;×j) is a complete set. This completes
the proof.

A hyperideal subspace Ĩ of a multi-hyperring space R̃ =
m⋃
i=1

Ri with a

double binary hyperoperation set O(R̃) is a multi-hyperring subspace of R̃
satisfying the following conditions:

1. Ĩ is a multi-hypergroup subspace with a hyperoperation set {+ : (+,×) ∈
O(Ĩ)};

2. for any r ∈ R̃, a ∈ Ĩ and (+,×) ∈ O(Ĩ), r×a ⊆ Ĩ and a×r ⊆ Ĩ provided
these hyperoperation results exist.

Theorem 3.3. A subset Ĩ with O(Ĩ), O(Ĩ) ⊂ O(R̃) of a multi-hyperring space

R̃ =
m⋃
i=1

Ri with a double binary hyperoperation set O(R̃) = {(+i,×i)|1 ≤ i ≤

m} is a multi-hyperideal subspace if and only if for any integer i, 1 ≤ i ≤
m, (Ĩ ∩Ri,+i,×i) is a hyperideal of the hyperring (Ri,+i,×i) or Ĩ ∩Ri = ∅.

Proof. By the definition of a hyperideal subspace, the necessity condition is
obvious.

For the sufficiency, denote by R̃(+,×) the set of elements in R̃ with binary
hyperoperations “+” and “×”. If there exists an integer i such that Ĩ∩Ri 6= ∅
and (Ĩ ∩ Ri,+i,×i) is a hyperideal of (Ri,+i,×i), then for all a ∈ Ĩ ∩ Ri,
∀ri ∈ Ri, we know that
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ri ×i a ⊆ Ĩ ∩Ri; a×i ri ⊆ Ĩ ∩Ri.

Notice that R̃(+i,×i) = Ri. Therefore, we get that for all r ∈ R̃,

r ×i a ⊆ Ĩ ∩Ri; and a×i r ⊆ Ĩ ∩Ri

provided these hyperoperation results exist. Whence, Ĩ is a hyperideal sub-
space of R̃.

A hyperideal subspace Ĩ of a multi-hyperring space R̃ is maximal if for any
hyperideal subspace Ĩ ′, if R̃ ⊇ Ĩ ′ ⊇ Ĩ, then Ĩ ′ = R̃ or Ĩ ′ = Ĩ. For any order of

these double hyperoperations in O(R̃) of a multi-hyperring space R̃ =
m⋃
i=1

Ri,

not loss of generality, let us assume it being (+1,×1) � (+2,×2) � ... �
(+m,×m), we can construct a hyperideal subspace chain of R̃ by the following
programming.

(i) Construct a hyperideal subspace chain

R̃ ⊃ R̃11 ⊃ R̃12 ⊃ ... ⊃ R̃1s1

under the double binary hyperoperation (+1,×1), where R̃11 is a maximal
hyperideal subspace of R̃ and in general, for any integer i, 1 ≤ i ≤ m − 1,
R̃1(i+1) is a maximal hyperideal subspace of R̃1i.

(ii) If the hyperideal subspace

R̃ ⊃ R̃11 ⊃ R̃12 ⊃ ... ⊃ R̃1s1 ⊃ ... ⊃ R̃i1 ⊃ ... ⊃ R̃isi

has been constructed for (+1,×1) � (+2,×2) � ... � (+i,×i), 1 ≤ i ≤ m− 1,
then construct a hyperideal subspace chain of R̃isi ,

R̃isi ⊃ R̃(i+1)1 ⊃ R̃(i+1)2 ⊃ ... ⊃ R̃(i+1)s1

under the hyperoperations (+i+1,×i+1), where R̃(i+1)1 is a maximal hyper-

ideal subspace of R̃isi and in general, R̃(i+1)(i+1) is a maximal hyperideal

subspace of R̃(i+1)j for any integer j, 1 ≤ j ≤ si − 1. Define a hyperideal

subspace chain of R̃ under (+1,×1) � (+2,×2) � ... � (+i+1,×i+1) being

R̃ ⊃ R̃11 ⊃ ... ⊃ R̃1s1 ⊃ ... ⊃ R̃i1 ⊃ ... ⊃ R̃isi ⊃ R̃(i+1)1 ⊃ ... ⊃ R̃(i+1)si+1
.

Theorem 3.4. For a multi-hyperring space R̃ =
m⋃
i=1

Ri, its hyperideal subspace

chain only has finite terms if and only if for any integer i, 1 ≤ i ≤ m,
the hyperideal chain of the hyperring (Ri; +i,×i) has finite terms, i.e., each
hyperring (Ri; +i,×i) is an Artinian hyperring.

Proof. Let the order of double hyperoperations in
→
O (R̃) be
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(+1,×1) � (+2,×2) � .... � (+m,×m)

and a maximal hyperideal chain in the hyperring (R1; +1,×1) is

R1 � R11 � ... � R1t1 .

Calculation shows that

R̃11 = R̃\{R1\R11} = R11

⋃
(
m⋃
i=2

)Ri,

R̃12 = R̃11\{R11\R12} = R12

⋃
(
m⋃
i=2

)Ri

...

R̃1t1 = R̃1t1\{R1(t1−1)\R1t1} = R1t1

⋃
(
m⋃
i=2

)Ri.

By Theorem 3.3, we have that

R̃ ⊃ R̃11 ⊃ R̃12 ⊃ ... ⊃ R̃1t1

is a maximal hyperideal subspace chain of R̃ under the double binary hy-
peroperation (+1,×1). In general, for any integer i, 1 ≤ i ≤ m − 1, let us
assume

Ri � Ri1 � ... � Riti

is a maximal hyperideal chain in the hyperring (R(i−1)ti−1
; +i,×i). We have

R̃ik = Rik

⋃
(

m⋃
j=i+1

)R̃ik

⋂
Ri.

Then we know that

R̃(i−1)ti−1
⊃ R̃i1 ⊃ R̃i2 ⊃ ... ⊃ R̃iti ,

is a maximal hyperideal subspace chain of R̃(i−1)ti−1
under the double hyper-

operation (+i,×i) by Theorem 3.3. Whence, if for any integer i, 1 ≤ i ≤ m,
the hyperideal chain of the hyperring (Ri; +i,×i) has finite terms, then the
hyperideal subspace chain of the multi-hyperring space R̃ only has finite terms.
On the other hand, if there exists one integer i0 such that the hyperideal chain
of the hyperring (Ri0 ; +i0 ,×i0) has infinite terms, then there must be infinite
terms in the hyperideal subspace chain of the multi-hyperring space R̃.

A multi-hyperring space is called an Artinian multi-hyperring space if each
hyperideal subspace chain only has finite terms. The following is a consequence
by Theorem 3.4.
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Corollary 3.5. A multi-hyperring space R̃ =
m⋃
i=1

Ri with a double binary hy-

peroperation set O(R̃) = {(+i,×i)|1 ≤ i ≤ m} is an Artinian multi-hyperring
space if and only if for any integer i, 1 ≤ i ≤ m, the hyperring (Ri; +i,×i) is
an Artinian hyperring.

For a multi-hyperring space R̃ =
m⋃
i=1

Ri with a double binary hyperopera-

tion set O(R̃) = {(+i,×i)|1 ≤ i ≤ m}, an element e is an idempotent element
if e ∈ e×e = e2× for a double binary hyperoperation (+,×) ∈ O(R̃). We define

the directed sum Ĩ of two hyperideal subspaces Ĩ1 and Ĩ2 as follows:

(i) Ĩ = Ĩ1
⋃
Ĩ2;

(ii) Ĩ1
⋂
Ĩ2 = {0+}, or Ĩ1

⋂
Ĩ2 = ∅, where 0+ denotes an unit element under

the hyperoperation +.

Denote the directed sum of Ĩ1 and Ĩ2 by

Ĩ = Ĩ1
⊕
Ĩ2.

If for any Ĩ1, Ĩ2, Ĩ = Ĩ1⊕Ĩ2 implies that Ĩ1 = Ĩ or Ĩ2 = Ĩ, then Ĩ is said to be
non-reducible. We get the following result for these Artinian multi-hyperring
spaces.

Theorem 3.6. Any Artinian multi-hyperring spaces R̃ =
m⋃
i=1

Ri with a double

binary hyperoperation set O(R̃) = {(+i,×i)|1 ≤ i ≤ m} is a directed sum of
finite non-reducible hyperideal subspaces, and if for any integer i, 1 ≤ i ≤
m, (Ri; ,+i,×+ i) has unit 1×i

, then

R̃ =
m⊕
i=1

(
si⊕
j=1

(Ri ×i eij)
⋃

(eij ×i Ri)),

where eij , 1 ≤ j ≤ si are orthogonal idempotent elements of the hyperring Ri.

Proof. Denote by M̃ the set of hyperideal subspaces which can not be rep-
resented by a directed sum of finite hyperideal subspaces in R̃. By Theorem
3.4, there is a minimal hyperideal subspace Ĩ0 in M̃ . It is obvious that Ĩ0 is
reducible.

Let us assume that Ĩ0 = Ĩ1 + Ĩ2. Then Ĩ1 /∈ M̃ and Ĩ2 /∈ M̃ . Therefore,
Ĩ1 and Ĩ2 can be represented by directed sums of finite hyperideal subspaces.
Whence, Ĩ0 can be also represented by a directed sum of finite hyperideal
subspaces. It is a contradiction, since Ĩ0 ∈ M̃ .
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Now let R̃ =
s⊕

i=1

Ĩi, where each Ĩi, 1 ≤ i ≤ s, is non-reducible. Notice that

for a double hyperoperation (+,×), each non-reducible hyperideal subspace of
R̃ has the form

(e×R(×))
⋃

(R(×)× e), e ∈ R(×).

Whence, we know that there is a set T ⊂ R̃ such that

R̃ =
⊕

e∈T,×∈O(R̃)

(e×R(×))
⋃

(R(×)× e).

For any hyperoperation × ∈ O(R̃) and a scalar unit 1×, let us assume that

1× ∈ e1 ⊕ e2 ⊕ ...⊕ el, ei ∈ T, 1 ≤ i ≤ s.

Then

ei × 1× ⊆ (ei × e1)⊕ (ei × e2)⊕ ...⊕ (ei × el).

Therefore, we get that

ei ∈ ei × ei = e2i and ei × ej = 0i for i 6= j.

That is, ei, 1 ≤ i ≤ l, are orthogonal idempotent elements of R̃(×). Notice
that R̃(×) = Rh for some integer h. We know that ei, 1 ≤ i ≤ l are orthogonal
idempotent elements of the hyperring (Rh,+h,×h). Denote by ehj for ej , 1 ≤
j ≤ l. Consider all scalar units in R̃, we get that

R̃ =
m⊕
i=1

(
si⊕
j=1

(Ri ×i eij)
⋃

(eij ×i Ri)).

This completes the proof.

Open problems

1. Similar to Artinian multi-hyperring spaces, one can define Notherian
multi-hyperring spaces, simple multi-hyperring spaces, etc. Also, it remains
to be investigated and characterized its structure similar to the above results.

2. One can define a Jacobson or Brown-McCoy radical for multi-hyperring
spaces and study their properties in multi-hyperring spaces.

3. One can consider the possibility of extending and generalizing of all the
results obtained for hyperring to multi-hyperring spaces.

4. One can inquire further to the study of others multi-hyperstructure
spaces.
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