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Abstract

The complete graph is often used to verify certain graph theoretical definitions and
applications. Regarding the adjacency matrix, associated with the complete graph, as a
circulant matrix, we find its eigenvalues, and use this result to generate a trigonometrical
unit-equations involving the sum of terms of the form cos[za/(2t +1)];t =1,2,..., where a is

odd. This gives rise tot-complete-eigen sequences anddiagrams, similar to the famous Farey
sequence and diagram. We showthat the ratio, involving sum of the terms of thet-complete
eigen sequence, converges to ¥z, and use this ratio to find the t-complete eigen area. To find
the eigenvalues, associated with the characteristic polynomial of complete graph, using
induction, we create a general determinant equation involving the minor of the matrix
associated with this characteristic polynomial.
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1. Introduction
We use the graph-theoretical notation of Harris et. al.

Often, when a new graph-theoretical definition is introduced, the definition is tested on the
complete graph. For example, a complete graph on n vertices has a minimum vertex covering
consisting of any set of n-1 vertices. The number of spanning trees is well known, so is its
chromatic number, radius and diameter etc. The eigenvalues of the adjacency matrix
associated with the complete graph is also easy to compute (see Brouwer and Haemers, for
example). They are n-1 and -1.

Considering the adjacency matrix of the complete graph as a circulant matrix, we find its
eigenvalues in terms of sine and cosine. Using the cosine part and n odd, and the fact that -1
is aneigenvalue, we generatetrigonometrical-unit equations:

! (2t -2r +1) _
ZZCO T ::L t:1,2,3
r=1

These equation resulted in t-complete-eigen sequences and, using unit mirror pairs and
diagrams, similar to that of the famous Farey sequence and diagram. We show that the ratio,
involving the sum of the terms of the t-complete eigen sequence, converges to ¥z and evaluate
area using this ratio.

There are many known methods available to find the eigenvalues associated with the
complete graph (see Jessop). Some methods are short, others are long but mathematically
interesting. Although the induction method can be regarded as laborious, it illustrates the
variety of certain combinatorial aspects associated with the determinants, involved with the
characteristic polynomial associated with the matrix of the complete graph, which we
demonstrate in the theorem in section 3 below.

2.  Eigenvalues of the complete graph from a circulant matrix-eigen sequences

Considering the matrix of the complete graph as a circulant matrix, we find its eigenvalues to
create trigonometrical unit-equations. The results of the following Lemmas can be found in
Jessop.



Lemma 2.1
2h) a an_1
an—l a0 al an—2
Let A=|a,, a,; & - a,3
) a a - 4 |

be a (nxn)circulant matrix.

Then the eigenvectors of the circulant matrix A are given by:

n-1\l -
\iz(l,pj,pjz,...,pj l) , 1=01,..,n-1
27 . i
where p; :exp(—j are the nth roots of unity and i=+/-1.
n

The corresponding eigenvalues are then given by
Aj =8 +aypj + 80 +.tay P, j=0,.,n—1.

Lemma 2.2

Let A(K,) be the adjacency matrix of the complete graph K, on n vertices.
0 1 1 - 1]
101 -1

Then AK,)=|1 1 0 --- 1| ,

L -nxn

and its eigenvalues are, for all j, where 0< j<n-1,

27j 4 2(n-1)rij
A, =e" +e" +.4+e

= cos(z—ﬂjj + isin(z—ﬂjj + cos(4—ﬂjj + isin(4—ﬂ]} ot COS(MJ + isin(mj

_ZCO{ j+|25|n(2ﬂ]kJ (2.1)

Using the above Lemma and the fact that the eigenvalues of the adjacency matrix associated
with the complete graph are (n—1)(once) and —1(multiplicity(n—1)) we have the following

theorem:



Theorem 2.1
t _
2 cod — = |+co 3 +...4CO0 @-Iz Z m2-ar+l) =1 t=12,..
2t +1 2t+1 2t+1 —~ 2t—1
Proof

For j =0 the above lemma yields the eigenvalue n—1.Thus for j= 0 the eigenvalues are
-1.

So, for j=0,

ot 27K
co +1) sinf — |=-1
<Soof 27 ian 22
Now, for j =0, we consider n=2t +1.
n-1 : 2t :
ZSin(Zikj :Zsin(zikj
k=1 n k=1 2t+1
:sin( 274 j+sin(4—ﬂjj+...+sin( Atz j
2t+1 2t+1 2t+1
= sin(z—mJ+...+sin(Zt—ﬂ]j + sin[M)+...+sin[m—mj
2t+1 2t+1 2t+1 2t+1

=[A]+[B]

where A has the first t terms and B the next t terms. Adding the first term of A and the last
term of B yield:

) 27 . 4t
sin +Sin
(Zt +1) (Zt +l)

_sin (2t+D)z (2t-Drx +sin (2t+1)7r+(2t—1)7r
2t +1 2t +1 2t +1 2t +1

_ Sin((Zt —1)7z) —Sin((Zt —1)7[) _
2t+1 2t+1

Generally, adding the r th term of A and the t —(r —1)th term of B, wherer =1,2,...t, yields

. ( 27 . (27x(2t—(r-1)
sin +sinf ————=
2t+1 2t+1




:Sin(ﬂ(Zt +1) (2t-2r +1)7rj +Sin(7r(2t +1) N (2t -2r +1)j

2t +1 2t +1 2t+1 2t +1
=sin (2t-2r+1)x —sin (2t—2r+1)x =0; r=12,...t.
2t +1 2t +1
n-1 H
Therefore,for j =0, ZSin(zinkj =0
k=1
and then
2t-1 2t-1 ' 2t-1 H
A —ZCO{ o j+|25m( o ] kz_;co{zzitk]:—l.
Now,
2t-1
ZCO{Zﬂjk)
k=1
{ { 27 j { A j { 27 ﬂ { {2;z(t+1)j {27:(t+2)) { Ant ﬂ
=|co +Co +...4+CO +|cod ——~ |+cod ——~ |+...4+C0§ ——
2t+1 2t+1 2t+1 2t+1 2t+1 2t+1
=A+B

Ahas the first t terms and B the next t terms. Adding the first term of A and the last term of B
yield:

27 Azt
co +Co
2t+1 2t +1
(2t+)zr (2t-Hrx +co t+D)r N 2t-Dr
2t+1 2t+1 2t+1 2t+1

_2¢co 2t+)r co 2t-Dr
2t +1 2t+1

_ 2co (2t —1)72')
2t+1

Thet-th term of A and the first term of B yield:

2t 2z(t+1)
co +Cc0§ —————=~
2t+1 2t+1

2t+)z =« j+c0 (2t+1)7r+ Vs j

2t+1 2t+1 2t+1 2t+1




Adding the second term of A and the second to last term of B:

272 27(2t - (2-12))
CosS + COS
2t+1 2t+1

272 27(2t-1)
= CO0S +COS§| ————
2t+1 2t+1

2t+)zr (2t-3)x 7(2t+1) = (2t-3)
= CO0S - + COS +
2t+1 2t+1 2t+1 2t+1

_ —ZCOS(”(Zt —3))
2t+1

Generally, adding the r-th term of A and the t —(r —1)-th term of B; r =1,2,... .

27 2r(2t—(r-1)
cosS +Cco§| —————=
2t+1 2t+1

r(2t+1) (2t-2r+Drx 7(2t+1) #&(2t-2r+1)
= COS - + COS +
2t+1 2t+1 2t+1 2t+1

= 2C0S T COS
2t+1

(2t —2r +l)71'}

2t-2r+Yx

=-2C0S
2t+1

j; r=12..,t.

t _
Thus ZZ{COS (2t—2r +1)7T} =1; t=1,2,...which yields
r— 2t+1

2| cosl —*— |+cos 37 +CO0S o7 +...+cosw =1 t=12,..
2t+1 2t+1 2t+1 2t+1

which yields

T 37 S5z 2t-Dz) 1.
cos| —— |[+Cc0S| —— |+Cc0S| —— |+...+CcOoS| ——— |=—; t=12,...
2t+1 2t+1 2t+1 2t+1 2

O

We therefore generate the following trigonometrical unit-equations having t terms involving

COS

7T , where
2t+1 2t+1

also odd.There will be exactly t such odd rational numbers forming a t-sequence:

involves all “odd” rational numbers in the interval (0,1), i.e. a is



t=1 2{00{%)} =1, %is the only odd rational number between 0 and 1.

t=2; 2{00{%) + co{%ﬂﬂ; %,gare the 2 odd rational numbers between 0 and 1.

a5l of )} 32

Oand 1.

e sl ol ol

the sequence.

are the three odd rational numbers between

~N | o

are the 4 terms of

35
19 91

((oNIEN!

1
9

For each t, we therefore associate the t-sequence,of odd rational terms, each term belonging

to the interval (0,1) and having the form , an odd, containing t terms:

2t+1

1 3 5 7  2-1

1 ' 1] 1rrry ) t=112|-"-
2t+1 2t+1 2t+1 2t+1 2t+1

This sequence has similarities to the Farey sequence. The Farey sequence of order n is the
sequence FY,, of completely reduced fractions between 0 and 1 which, when in lowest terms,

have denominators less than or equal to n, arranged in order of increasing size. (seeHardy
andWright). Farey sequences are named after the Britishgeologistlohn Farey, Sr., whose
letter about these sequences was published in the Philosophical Magazine in 1816.

The sequence we derived from using the eigenvalues of the complete graph is called the

t-complete-eigen sequence.

Corollary 2.1
The sum of the terms of the t-complete eigen sequence:

1 3 5 7 2t—1
2t+1'2t+1 2t+1'2t+1" 2t +1’

t=1.2,...is given by:

t 2t-2r+l %

= 1=123...
r=1 2t+1 2t+1

Proof

Writing each t-sequence down twice, with the second reversed, we get:
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1 3 5 7 2t -1
2t+1'2t+1'2t+1'2t+1" 2t +1

2t—-1 2t-3 2t—-6 2t—7 1
2t+1'2t+1 2t+1 2t+1" 2t +1

Adding corresponding terms we get double the sum of the terms of the sequence:
t B 2

5 Z2t 2r+1 _t 2t & .
= 2t+1 2t+1 2t+1

Therefore,

t 2

zZt r+l 1 2t t . t=123..

o 2t+1 T2\ 2t+1) 241

which gives the result. m

If we form the ratio of the t-complete-eigen sequenceby dividing each term of the original t-
complete sequence by t, we obtain the sequence

1 3 5 7 2t-1
t(2t+1) t(2t+1) t(2t+1) t(2t+1) " t(2t+1)’

Lot-2r+1 1 t° t
- =123...
Z‘ t(2t +1) [(2t+1)j (2t+1)

. 1 .
which converges to the constant value of 5 as t increases.

:t=12,.. and

2 2

0, is the t-complete-eigenratio of
t(2t +1) (2t +1)

to t, which converges to the constant
value of —

This gives the following corollary:

Corollary 2.2

t 2 t —
z Gl A LS I AN ) TN
=~ t(2t+1) o t(2t+1) | 2 (2t+1)

r=1




1 3 5 7 2t-1 . . . . )
, , , associate the mirror image unit-pair
2t+1 2t+1 2t+1 2t+1 2t+1

partner belonging to the unit-mirror t-complete eigen sequence:

For the sequence S =

g 2t 2t-2 2t—-4 2t-6 2 of the form

= , , , where c is even.
2t+1 2t+1 2t+1 2t+1 2t+1 2t+1

The sum of corresponding pairs of terms from S and S'yields

2t-2r+1  2r  2t-2r+1+2r 2t+1

+ = = =1 r=123...t.
2t+1 2t+1 2t+1 2t+1
Thus 2t—2r+1; 2r ; r=2123...,t are unit-mirror pairs.
2t+1  2t+1

The union of S and S'yields the total t-complete eigen sequence:

1 2 3 4 5 6 7 2t-1 2t

SUSI: L L . b ) ) I | )
2t+1 2t+1 2t+1 2t+1 2t+1 2t+1 2t+1 2t+1 2t+1
2t
and Y —— =
kz_;2t+1

Joining neighbors and unit mirror pairs we create the diagram for t =3 (similar to the Farey
sequence diagram):

17 217 3/7 4/7 5/7 6/7
Figure 2.1: Diagram for the total t-complete eigen sequence for t =3

The average degree of the vertices of the complete graph on n=2t+1 vertices is
n—-1=(2t+1)—-1=2t.
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Attaching the average degree of the complete graph on n=2t+1 vertices, to the integral of
thet-complete-eigenratio with respect to n, we form the t-complete eigen area(see Winter and
Adewusi and Winter and Jessop):

Ar(Kgh

t2
t(2t+1)
t
(2t+1)
n-1
_ 2
= (n —1)_[(2(n —l) +1j

2

dn

=(n-1)f

dn

= (n-Df

dn

n-1
=(n-1)|——=dn
(-1
:n—_l(n—lnn+c).
2
The first t-complete eigensequence arises when n=3and t =1. The sequence is

cos

;%and Ar(KS ):(3—;1)(3—In 3+¢)=0. So ¢ =In3-3, so that the t-complete eigen area

Wl

is:

AuK§Q)=E§50p4nn+m3—3)
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3. Induction and the eigenvalues of the complete graph

There are many different methods available to find the eigenvalues associated with the
complete graph (see Jessop). Some methods are short, others are long but elegant. Although
the induction method is long, it illustrates the intriguing aspects associated with the
determinants, involved with characteristic polynomial associated with the matrix of the
complete graph, which we demonstrate in the theorem below.

The following theorem is used in the proof of finding the eigenvalues of the complete graph.
It involves the determinant of a minor of matrix Al — A, , where A, is the adjacency matrix

of the complete graph on n vertices.

Theorem 3.1
-1 -1 -1 1]
-1 12 -1 -1
IfH,={-1 -1 A4 .- -1| , where H isa nxn matrix, with n>2,
-1 -1 -1 --- A
L Jnxn
1 -1 -1 1]
-1 2 -1 -1
thendetH, =detf -1 -1 A4 ... -1
-1 -1 -1 - 2]

=(D(A+)"



Proof (by induction)

-1 -1
Forn=2,H, = 1

det(H,)=—-1-1

=—(1+1
=—(1+D*
-1 -1 -1
det(H,) =[-1 1 -1
-1 -1 A
:—det/1 _]‘+det_1 _W—det_1 /111
-1 A -1 A -1 -
A - -1 -1 —
= -1det + det + det
-1 A -1 A —

—det(A — A(K, )+ 2det(H,)

~1(2? 1)+ 2(- 2-1)
~(A+1) (1 -1)-2(1+1)
~(A+1)1-1+2)

=—(1+1)
-1 -1 -1 -1
-1 A -1 -1
det(H,) = 121 4 -1
-1 -1 -1 A
A -1 - -1 -1 -
=—det-1 A -1+3det|-1 A -
-1 -1 A -1 -1 A

— —det(41 - A(K5))+ 3det(H,)
= —(Adet(Al — A(K,))+2det(H, ))+3det(H,)

12



——(a(22 ~1)-2(2+1)-3(a+1)
=—(AUA2+1)21-1)-2(21+1))-3(21+1f
——(A+1)\ 2 — 21-2)-3(2+1)
=—(2+1)(2+1)1—-2)-3(2+1)
=—(1+1)7(2-2)+3)
=—(1+1)°

det(Hy)  =—det(Al — A(K,))+4det(H,)
=—(1det(Al — A(K;) +3det(H,)))+ 4det(H )
(ﬂdet(/ll A(K,)) +2det(H,))+3det(H;) )+ 4det(H,)

=-(
(/1 /12 1 22(A+1)-3(1+1) )—4(,1+1)
(/12/1+1)(z 1) 22(2 +1)— 3(/1+1)2)—4(/1+1)3
(/1 /1+1 /12 3(/1+1)2)—4(/1+1)3

- _[,1(/1 +1) A +1) 1 -2)-3(2 +1)2 ) —4(2+1)

= (A+1°[2 —22-3]-4a(2 +1)°
=—(A+1°[(21+1) 2 -3)]- 42 +1)°
=—(1+1°(1-3)-4(2+1p
=—(1+1P(1-3+4)
=—(2+1°(2+1)

=—(1+2)

Assume the hypothesis it true for allk <n, i.e., det(H,) =—(1+1)*forallk <n.

Then, for n=k +1,

(-1 -1 -1 -~ —1]

-1 2 -1 - -1
detH, , =det -1 -1 4 ... -1

-1 -1 -1 }“_(m)x(m)

Then, expanding along the first row,

13
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detH, ,
(42 -1 -1 - 1] -1 -1 -1 - 1]
-1 2 -1 - -1 -1 2 -1 - -1
=(-1)det| -1 -1 A - 1| +(-1)(-1f(k+1)-1]detj -1 -1 A1 - -1
-1 -1 -1 -« 2], -1 -1 -1 - A

The first term is obtained from the expansion of the first column (in the first row) and
the second terms isobtained from the ((k +1)—1) identical terms obtained from the

expansion of the 2" to ((k +1)—1)th columns.

Now,
(A -1 -1 -« 1] -1 -1 -1 - 1]
-1 2 -1 - -1 -1 A -1 - -1
det(1l — A(K,))=det -1 -1 4 - -1| andH,=-1 -1 2 - -1
-1 -1 -1 o A, -1 -1 =1 - A
Then,
det(Hk+l)

= (—1)det (Al — A(Ky )+ k det(Hy )
= (—1)}{1det(Al — A(Kg_1))+ (k —1)det(Hy 1)} + kdet(Hy )

= (~1}{A(A det(Al — A(Ky_2)) + (k —2)det(Hy_5))+ (k —1)det(Hy_1 )} + k det(Hy )
= (- 1){/12 det(Al — A _5) + A(k —2)det(H_5 )+ (k —1) det(H k—l)}+ k det(Hy )

(- 1){/12(1(de)t(m — Ac_3)+(k—3)det(Hy_3))+ A(k — 2)det(Hy )+ (k— 1) det(Hy )|
+kdet(H,

= (COVBdet(A — Ac_g)+ A2(k —3)det(Hy_g)+ A(k — 2) det(Hy_p)+ (k 1) det(Hy_;)|
+kdet(H,)
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Now, the leading A must have power (k —2)so that we get det(/’tl — Ak—(k—z)) and

det(H k—(k-2) )which are both known. So, continuing,

det(H k+1)
— (—1) A2 det(Al — A_y_p )+ A32det(H,)+ A *3det(H, )+ A S4det(H, )+
ot 2(k —3)det(H,_5)+ Ak —2)det(H, ,)+ (k —1)det(H, ;) |+ kdet(H,)

Substituting det(Al — A(K5)) = (/12 —1): (A +1)A~-1) and det(H, )=—(2+1)"
for all k < n, we get

det(H k+l)
= (-1 XA+ 21-1)- A2 +1)- 2 *3(A+1 - 2C4(A+1) +...
22 (k=3 A+1) " — Ak -2)(A+1D) " —(k-D)(2+2)*? ]-k(2+2)*

Factorising (4 +1) out of the k terms in the square brackets, we get

det(H k+l)
= (1 a+1) ( A?2(A-1)- A2 23 +1) — A4 +1) +...
—A2(k=3)A+D)° — Ak —2)(A+1) " —(k—D(A+1) ) |-k(2+2)*

Working with the first two terms in square brackets, we get

det(H k+l)
—(c1XA+2f (A2 —2)-AP2- (A1) — A1+
— 22k =3)A+1)° Ak —2)(A+1) ! —(k-D)(2+2)2 ) ]-k(2+2)"

—(C2)A+D) (AR —a—2)- 23(A+ 1) — A4+
— 22 (k=3 A+1)° Ak -2)(A+1) ! —(k-D)(2+2)2 ) ]-k(2+2)"

=(-1A+1) (A P(A+12-2)- A *3A+1) - A P44 +1) +...
— 22k =3 A+1)° Ak -2)(A+1) ! —(k-D)(2+2)2 ) |-k(2+21)"

Taking out the next factor of (4 +1) from inside the square brackets, we get

det(H,.,)
= ()2 +2P[ ( A2(2-2)- A *3-A4(A+1)+...
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— 22 (k=3 A+1)° — Ak —2)(2+D)° —(k-D)(2+1)" ) ]-k(2+D)*

Working with the first two terms in square brackets, we get:

det(H,.,)
= (XA (A2 —24)- 23— A5 42 +1)+..
— A2k =3) A+ ° — Ak —2)(A+1)° —(k=D(A+1)* ) ]-k(2+1)*

= (112 (A2 —24-3)- 2542 +1)+ ..
~22(k —3)(/1 + D Ak -2)(A+1)° —(k-)(A+2)* ) k(2 +2)!

= (DA +2P[ ( A (A+2A-3) - A P4A+1)+...
— 22 (k=3 A+1)° — Ak —2)(A+)° —(k-)(2+2)" ) ]-k(2+D)*

Note that the first term in the square brackets comprises of (4 +1)2*" (1 —(t—1)).

We do the step (1) above a total of (k —3)times, taking out the factor (/1 +1)k_3 to get

det(H,.,)
= ()2 +2)°[ AA+2)A-(k-2)-(k-D(2+1) ]-k(A+1)*

Note that the power of A in the first term in the square brackets is (k —2)—(k —3) =
and the power of (1 +1)in the second term is also (k —2)— (k —3)=1. Simplifying, we
get

det(H, )

= (1A +D) [ A+ D)2 — Ak —2)— (k1)) ]-k(2+2)<
= (2 +2)?[ (22 - Ak —2)— (k—1) ]-k(A+1)*

= ()2 +0*?[ (A+1) 21— (k1)) ]-k(2+2)**

= ()A+) [ (A-(k-D) ]-k(2+1)*

= ()A+) [ (A-Kk-D+k) ]

)2+ (2+1) ]

(-1} +2)f

This concludes the proof, by induction, that detH, = (-1)(A+1)"*, forall n>2. o



Corollary 3.1

Let A(K,) be the adjacency matrix of the complete graph K, on n vertices.

0 1 1 -« 1]

101 -1
Then A(K,)=|1 1 0 - 1

111 - O_m(n

has eigenvalue (n-1) with multiplicity 1, and eigenvalue -1 with multiplicity (n-1).

Hence det(4l — A(K, )= (2+1)" {1 -(n-1)}.

Proof of Corollary 3.1 (by induction)

01
For n=2, A(Kz):{1 O}

det(21 - A(K, ) =det{_ﬂl ﬂ

=121
=(1+1)1-1)
=(A+1)1-1)
Note that the eigenvalues of A(K;) are A =-1 (1 time) and A=1 (once).

Assume the hypothesis it true for k <n, i.e.,

2 -1 -1 - 1]

-1 A -1 - -1
det(Al —A(K,)) =det -1 -1 A - -1

-1 -1 -1 - A

=2+ a—-(k-1)}fork <n
i.e., A=-1 (k—1)times, and A = (k —1)once.

Then, forn=k +1,
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det[21 - A(Ky., )

A -1 -1 - 1] -1 -1 -1 - -1

-1 A -1 - -1 -1 4 -1 - -1
=Adet{-1 -1 A4 - —-1| +kdet|-1 -1 A ... -1

-1 -1 -1 - 4], -1 -1 -1 - 4],
= Adet(A(K,))+kdet(H,)

Now applying the inductive hypothesis for det(A(K, )), and Theorem 3.1 for det(H,),
we get

detfil - A(Kp)] = A2+ A - (k—1)}+ k(1) (A +1)?
= () - Ak -D-K]
= (2+1) (2412 k)
=(1+1) (2-k)
i.e., A=-1 ktimesand A=Kk once.

So we have proved that the eigenvalues of the adjacency matrix of the complete graph A(K )
are A=-1and A=n-1, and that the characteristic polynomial is

Py )(4)=(2+1)" (2~ (n-1)). The two factors (1+1) and (1—(n—1)) give rise to the
quadratic 4> —(n—2)4—(n—1) which has the associated conjugate pairs

_(n-2), [2=n)’ +4(n-1)
A= _\/

4
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4.  Conclusion

Regarding the adjacency matrix, associated with the complete graph, as a circulant matrix, we
formedthe unit-equations:

Z[CO{ il j+co{ 37 J+...+co{wﬂ
2t +1 2t+1 2t+1

t J—
:ZZCO 7[(21: 2I’ +1)j
r=1

2t -1
=1 t=12,...
For each t, we therefore generated the t-sequence, of odd rational terms, each in the interval

(0,2) and having the formi:
2t+1

1 3 5 7 2t-1
2t+1'2t+1'2t+1'2t+1" 2t +1°

t=12,....

This sequence is referred to as the t-complete-eigen sequence and we showed that the sum of
its terms is

iZt—2r+1_ .

= ; 1=1,2,3...and that the ratio of this sum to t converges to i.
o 2t+l 2t+1 2

We use the associated total t-complete eigen sequence to construct the diagram involving unit
mirror pairs and found the t-complete eigen area, by using integration combined with the
average degree of the complete graph on n vertices, to be:

Ar(KS0S)) = ”T‘l(n “Ihn+In3-3).

In order to find the eigenvalues of the adjacency matrix, associated with the complete graph,
by induction, we generated an equation involving the determinant of the minor of the matrix
associated with the characteristic polynomial of this adjacency matrix.
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