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Abstract 

The complete graph is often used to verify certain graph theoretical definitions and 

applications. Regarding the adjacency matrix, associated with the complete graph, as a 

circulant matrix, we find its eigenvalues, and use this result to generate a trigonometrical 

unit-equations involving the sum of terms of the form ,...2,1)];12/(cos[  tta , where a is 

odd. This gives rise tot-complete-eigen sequences anddiagrams, similar to the famous Farey 

sequence and diagram. We showthat the ratio, involving sum of the terms of thet-complete 

eigen sequence, converges to ½ , and use this ratio to find the t-complete eigen area. To find 

the eigenvalues, associated with the characteristic polynomial of complete graph, using 

induction, we create a general determinant equation involving the minor of the matrix 

associated with this characteristic polynomial. 
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1.  Introduction 

We use the graph-theoretical notation of Harris et. al. 

Often, when a new graph-theoretical definition is introduced, the definition is tested on the 

complete graph. For example, a complete graph on n vertices has a minimum vertex covering 

consisting of any set of n-1 vertices. The number of spanning trees is well known, so is its 

chromatic number, radius and diameter etc. The eigenvalues of the adjacency matrix 

associated with the complete graph is also easy to compute (see Brouwer and Haemers, for 

example). They are n-1 and -1. 

Considering the adjacency matrix of the complete graph as a circulant matrix, we find its 

eigenvalues in terms of sine and cosine.  Using the cosine part and n odd, and the fact that -1 

is aneigenvalue, we generatetrigonometrical-unit equations: 
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These equation resulted in t-complete-eigen sequences and, using unit mirror pairs and 

diagrams, similar to that of the famous Farey sequence and diagram. We show that the ratio, 

involving the sum of the terms of the t-complete eigen sequence, converges to ½ and evaluate 

area using this ratio.  

There are many known methods available to find the eigenvalues associated with the 

complete graph (see Jessop). Some methods are short, others are long but mathematically 

interesting. Although the induction method can be regarded as laborious, it illustrates the 

variety of certain combinatorial aspects associated with the determinants, involved with the 

characteristic polynomial associated with the matrix of the complete graph, which we 

demonstrate in the theorem in section 3 below. 

2. Eigenvalues of the complete graph from a circulant matrix-eigen sequences 

Considering the matrix of the complete graph as a circulant matrix, we find its eigenvalues to 

create trigonometrical unit-equations. The results of the following Lemmas can be found in 

Jessop. 
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Lemma 2.1 

Let 
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be a  nxn circulant matrix. 

Then the eigenvectors of the circulant matrix A are given by: 
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exp  are the nth roots of unity and 1i .  

The corresponding eigenvalues are then given by 
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Lemma 2.2 

Let  nKA  be the adjacency matrix of the complete graph nK on n vertices.  

Then )( nKA ,
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and its eigenvalues are, for all j , where ,10  nj  
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Using the above Lemma and the fact that the eigenvalues of the adjacency matrix associated 

with the complete graph are  1n (once) and 1 (multiplicity  1n ) we have the following 

theorem: 
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Theorem 2.1 
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Proof 

For 0j  the above lemma yields the eigenvalue .1n Thus for 0j  the eigenvalues are

1 . 

So, for 0j , 
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Now, for 0j , we consider 12  tn .  
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where A has the first t  terms and B the next t  terms. Adding the first term of A and the last 

term of B yield: 
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Generally, adding the r th term of A and the  1 rt th term of B, where tr ,...,2,1 , yields 
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Ahas the first t terms and B the next t terms. Adding the first term of A and the last term of B 

yield: 
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The t -th term of A and the first term of B yield: 
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Adding the second term of A and the second to last term of B: 
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Generally, adding the r-th term of A and the  1 rt -th term of B; .,...,2,1 tr   
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We therefore generate the following trigonometrical unit-equations having t terms involving 
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, where 

12 t

a
 involves all “odd” rational numbers in the interval (0,1), i.e. a is 

also odd.There will be exactly t such odd rational numbers forming a t-sequence: 
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the sequence. 

For each t, we therefore associate the t-sequence,of odd rational terms, each term belonging 

to the interval (0,1) and having  the form
12 t
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This sequence has similarities to the Farey sequence. The Farey sequence of order n is the 

sequence nFY of completely reduced fractions between 0 and 1 which, when in lowest terms, 

have denominators less than or equal to n, arranged in order of increasing size. (seeHardy 

andWright). Farey sequences are named after the BritishgeologistJohn Farey, Sr., whose 

letter about these sequences was published in the Philosophical Magazine in 1816. 

The sequence we derived from using the eigenvalues of the complete graph is called the 

t-complete-eigen sequence. 

 

Corollary 2.1 

The sum of the terms of the t-complete eigen sequence: 
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Proof 

Writing each t-sequence down twice, with the second reversed, we get: 

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Vulgar_fraction
http://en.wikipedia.org/wiki/In_lowest_terms
http://en.wikipedia.org/wiki/Denominator
http://en.wikipedia.org/wiki/G._H._Hardy
http://en.wikipedia.org/wiki/G._H._Hardy
http://en.wikipedia.org/wiki/G._H._Hardy
http://en.wikipedia.org/wiki/G._H._Hardy
http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/United_Kingdom
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Adding corresponding terms we get double the sum of the terms of the sequence:
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which gives the result. □ 

If we form the ratio of the t-complete-eigen sequenceby dividing each term of the original t-
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For the sequence 
12

12
,...,

12

7
,

12

5
,

12

3
,

12

1








t

t

tttt
S associate the mirror image unit-pair 

partner belonging to the unit-mirror t-complete eigen sequence: 

12

2
,...,

12

62
,

12

42
,

12

22
,

12

2
'
















tt

t

t

t

t

t

t

t
S of the form

12 t

c
where c is even. 

The sum of corresponding pairs of terms from S and 'S yields  

tr
t

t

t

rrt

t

r

t

rt
...,3,2,1;1

12

12

12

2122

12

2

12

122


















. 

Thus tr
t

r

t

rt
...,3,2,1;

12

2
;

12

122













 are unit-mirror pairs. 
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Joining neighbors and unit mirror pairs we create the diagram for 3t  (similar to the Farey 

sequence diagram): 
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Figure 2.1: Diagram for the total t-complete eigen sequence for 3t  

The average degree of the vertices of the complete graph on 12  tn  vertices is 

  ttn 21121  . 
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Attaching the average degree of the complete graph on 12  tn  vertices, to the integral of 

thet-complete-eigenratio with respect to n, we form the t-complete eigen area(see Winter and 

Adewusi and Winter and Jessop): 
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3. Induction and the eigenvalues of the complete graph 

There are many different methods available to find the eigenvalues associated with the 

complete graph (see Jessop). Some methods are short, others are long but elegant. Although 

the induction method is long, it illustrates the intriguing aspects associated with the 

determinants, involved with characteristic polynomial associated with the matrix of the 

complete graph, which we demonstrate in the theorem below. 

The following theorem is used in the proof of finding the eigenvalues of the complete graph. 

It involves the determinant of a minor of matrix nAI  , where nA  is the adjacency matrix 

of the complete graph on n vertices. 
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Proof (by induction) 
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Now, the leading   must have power  2k so that we get   2det  kkAI  and 

 )2(det  kkH which are both known. So, continuing, 
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Corollary 3.1  
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KA n
 . The two factors  1  and  )1(  n  give rise to the 

quadratic    122  nn   which has the associated conjugate pairs 
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4. Conclusion 

Regarding the adjacency matrix, associated with the complete graph, as a circulant matrix, we 

formedthe unit-equations: 
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For each t, we therefore generated the t-sequence, of odd rational terms, each in the interval 

(0,1) and having  the form
12 t

a
: 

,...2,1;
12

12
,...,

12

7
,

12

5
,

12

3
,

12

1







t

t

t

tttt
. 

This sequence is referred to as the t-complete-eigen sequence and we showed that the sum of 

its terms is 

...3,2,1;
1212

122 2

1











t
t

t

t

rtt

r

and that the ratio of this sum to t converges to 
2

1
. 

We use the associated total t-complete eigen sequence to construct the diagram involving unit 

mirror pairs and found the t-complete eigen area, by using integration combined with the 

average degree of the complete graph on n vertices, to be: 

)33lnln(
2

1
)( cos

12 


 nn
n

KAr t . 

In order to find the eigenvalues of the adjacency matrix, associated with the complete graph, 

by induction, we generated an equation involving the determinant of the minor of the matrix 

associated with the characteristic polynomial of this adjacency matrix. 
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