A note on the length of maximal arithmetic progressions in random subsets

Y. Shang ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Tongji University, Shanghai 200092, China
${ }^{2}$ Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
E-mail: shyl@tongji.edu.cn; shylmath@hotmail.com

Abstract

Let $U^{(n)}$ denote the maximal length arithmetic progression in a non-uniform random subset of $\{0,1\}^{n}$, where 1 appears with probability p_{n}. By using dependency graph and Stein-Chen method, we show that $U^{(n)}-c_{n} \ln n$ converges in law to an extreme type distribution with $\ln p_{n}=-2 / c_{n}$. Similar result holds for $W^{(n)}$, the maximal length aperiodic arithmetic progression $(\bmod n)$.

Keywords Arithmetic progression, random subset, Stein-Chen method.

§1. Introduction

An arithmetic progression is a sequence of numbers such that the difference of any two successive members of the sequence is a constant. A celebrated result of Szemerédi [5] says that any subset of integers of positive upper density contains arbitrarily long arithmetic progressions. The recent work [6] reviews some extremal problems closely related with arithmetic progressions and prime sequences, under the name of the Erdös-Turán conjectures, which are known to be notoriously difficult to solve.

Let $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ be a uniformly chosen random word in $\{0,1\}^{n}$ and Ξ_{n} be the random set consisting elements i such that $\xi_{i}=1$. Benjamini et al. [3] studies the length of maximal arithmetic progressions in Ξ_{n}. Denote by $U^{(n)}$ the maximal length arithmetic progression in Ξ_{n} and $W^{(n)}$ the maximal length aperiodic arithmetic progression $(\bmod n)$ in Ξ_{n}. They show, among others, that the expectation of $U^{(n)}$ and $W^{(n)}$ is roughly $2 \ln n / \ln 2$.

In view of the random graph theory [4], a natural extension of [3] is to consider non-uniform random subset of $\{0,1\}^{n}$, which is the main interest of this note. Let $\xi_{i}=1$ with probability p_{n} and $\xi_{i}=0$ with probability $1-p_{n}$, where $p_{n} \in[0,1]$ is a function of n. Following [3], the key to our work is to construct proper dependency graph and apply the Stein-Chen method of Poisson approximation (see e.g. $[1,4]$). Our result implies that, in the non-uniform scenarios, the expectation of $U^{(n)}$ and $W^{(n)}$ is roughly $c_{n} \ln n$, with $\ln p_{n}=-2 / c_{n}$. Obviously, taking $p_{n} \equiv 1 / 2$ and $c_{n} \equiv 2 / \ln 2$, we then recover the main result of Benjamini et al.

The rest of the note is organized as follows. We present the main results in Section 2. Section 3 is devoted to the proofs.

§2. Results

Let ξ_{1}, ξ_{2}, \cdots be i.i.d. random variables with $P\left(\xi_{i}=1\right)=p_{n}$ and $P\left(\xi_{i}=0\right)=1-p_{n}$. For integers $1 \leq s, t \leq n$, define

$$
\begin{equation*}
\left.W_{s, t}^{(n)}:=\max \left\{1 \leq k \leq n: \xi_{s}=0, \prod_{i=1}^{k} \xi_{s+i t(} \bmod n\right)=1\right\} \tag{1}
\end{equation*}
$$

Therefore, $W_{s, t}^{(n)}$ is the length of the longest arithmetic progression ($\left.\bmod n\right)$ in $\{1,2, \cdots, n\}$ starting at s with difference t. Moreover, set $W^{(n)}=\max _{1 \leq s, t \leq n} W_{s, t}^{(n)}$. Similarly, define

$$
\begin{equation*}
U_{s, t}^{(n)}:=\max \left\{1 \leq k \leq\left\lfloor\frac{n-s}{t}\right\rfloor: \xi_{s}=0, \prod_{i=1}^{k} \xi_{s+i t}=1\right\} \tag{2}
\end{equation*}
$$

and $U^{(n)}=\max _{1 \leq s, t \leq n} U_{s, t}^{(n)}$, where $\lfloor a\rfloor$ is the integer part of a.
Theorem 2.1. Suppose that $\ln p_{n}=-2 / c_{n}$ and $\alpha<c_{n}=o(\ln n)$ for some $\alpha>0$. Let $\left\{x_{n}\right\}$ be a sequence such that $c_{n} \ln n+x_{n} \in \mathbb{Z}$ for all n, and $\inf _{n} x_{n} \geq \beta$ for some $\beta \in \mathbb{R}$. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e^{\lambda\left(x_{n}\right)} P\left(W^{(n)} \leq c_{n} \ln n+x_{n}\right)=1 \tag{3}
\end{equation*}
$$

where $\lambda(x)=p_{n}^{x+2}$. In particular, $W^{(n)} / c_{n} \ln n$ converges to 1 in probability, as $n \rightarrow \infty$.
Theorem 2.2. Suppose that $\ln p_{n}=-2 / c_{n}$ and $\alpha<c_{n}=o(\ln n)$ for some $\alpha>0$. Let $\left\{y_{n}\right\}$ be a sequence such that $c_{n} \ln n-\ln \left(2 c_{n} \ln n\right)+y_{n} \in \mathbb{Z}$ for all n, and $\inf _{n} y_{n} \geq \beta$ for some $\beta \in \mathbb{R}$. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e^{\lambda\left(y_{n}\right)} P\left(U^{(n)} \leq c_{n} \ln n-\ln \left(2 c_{n} \ln n\right)+y_{n}\right)=1 \tag{4}
\end{equation*}
$$

where $\lambda(x)=p_{n}^{x+2}$. In particular, $U^{(n)} / c_{n} \ln n$ converges to 1 in probability, as $n \rightarrow \infty$.
The relationship between p_{n} and c_{n} is depicted in Fig. 1. We observe that the probability p_{n}, by our assumptions, should within the regime $e^{-2 / \alpha}<p_{n}=e^{-2 / o(\ln n)}$ for $\alpha>0$. For the case $p_{n}=o(1)$ (i.e., $c_{n}=o(1)$), by letting $\alpha \rightarrow 0$, we can infer that $W^{(n)} \ll \ln n$ and $U^{(n)} \ll \ln n$ whp.

§3. Proofs

In this section, we will only consider Theorem 2.1 since the proofs are very similar. Theorem 2.1 will be proved through a series of lemmas by similar reasoning to [3] with some modifications.

For a collection of random variables $\left\{X_{i}\right\}_{i=1}^{n}$, a graph G of order n is called a dependency graph [4] of $\left\{X_{i}\right\}_{i=1}^{n}$ if for any vertex i, X_{i} is independent of the set $\left\{X_{j}\right.$: vertices i and j are not adjacent \}. The following is a result of Arratia et al. [2], which is a instrumental version of the Stein-Chen method in numerous probabilistic combinatorial problems [1].

Lemma 3.1.([2]) Let $\left\{X_{i}\right\}_{i=1}^{n}$ be n Bernoulli random variables with $E X_{i}=p_{i}>0$. Let G be a dependency graph of $\left\{X_{i}\right\}_{i=1}^{n}$. Set $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\lambda=E S_{n}=\sum_{i=1}^{n} p_{i}$. Define

$$
\begin{equation*}
B_{1}(G)=\sum_{i=1}^{n} \sum_{j: j \sim i} E X_{i} E X_{j} \tag{5}
\end{equation*}
$$

Figure 1: The probability p_{n} versus c_{n}.
and

$$
\begin{equation*}
B_{2}(G)=\sum_{i=1}^{n} \sum_{j \neq i: j \sim i} E\left(X_{i} X_{j}\right) \tag{6}
\end{equation*}
$$

Let Z be a Poisson random variable with $E Z=\lambda$. For any $A \subset \mathbb{N}$, we have

$$
\begin{equation*}
\left|P\left(S_{n} \in A\right)-P(Z \in A)\right| \leq B_{1}(G)+B_{2}(G) \tag{7}
\end{equation*}
$$

Fix $\varepsilon>0$ and set $m=\left\lfloor\left(c_{n}+\varepsilon\right) \ln n\right\rfloor$. Define the truncated version

$$
\begin{equation*}
W_{s, t}^{\prime(n)}:=\max \left\{1 \leq k \leq m: \xi_{s}=0, \prod_{i=1}^{k} \xi_{s+i t(\bmod n)}=1\right\} \tag{8}
\end{equation*}
$$

and $W^{\prime(n)}=\max _{1 \leq s, t \leq n} W_{s, t}^{\prime(n)}$. For $x \in \mathbb{R}$ define the indicator variable

$$
\begin{equation*}
I_{s, t}(x)=1_{\left\{W_{s, t}^{\prime(n)}>c_{n} \ln n+x\right\}} \quad \text { and } \quad S(x)=\sum_{1 \leq s, t \leq n} I_{s, t}(x) . \tag{9}
\end{equation*}
$$

By definition, it is clear that $W^{\prime(n)}>c_{n} \ln n+x$ if and only if $S(x)>0$. Set $A(s, t)=\{s+i t\}_{i=0}^{m}$. Fix $x \in \mathbb{R}$ such that $x<\varepsilon \ln n$. Hence, as in [3], we can construct a dependency graph G of random variables $\left\{I_{s, t}(x)\right\}_{s, t=1}^{n}$ by setting the vertex set $\{(s, t)\}_{s, t=1}^{n}$ and edges $\left(s_{1}, t_{1}\right) \sim\left(s_{2}, t_{2}\right)$ if and only if $A\left(s_{1}, t_{1}\right) \cap A\left(s_{2}, t_{2}\right) \neq \emptyset$.

The following combinatorial lemma is useful.
Lemma 3.2. ([3]) Let $D_{s, t}(k)$ be the number of pairs $\left(s_{1}, t_{1}\right)$ such that $t \neq t_{1}$ and $\mid A(s, t) \cap$ $A\left(s_{1}, t_{1}\right) \mid=k$. Then we have

$$
D_{s, t}(k) \leq \begin{cases}(m+1)^{2} n, & k=1 \tag{10}\\ (m+1)^{2} m^{2}, & 2 \leq k \leq \frac{m}{2}+1 \\ 0, & k>\frac{m}{2}+1\end{cases}
$$

Recall the definitions (5) and (6). Let

$$
\begin{equation*}
B_{1}(x, G)=\sum_{s_{1}, t_{1}} \sum_{\substack{s_{2}, t_{2} \\\left(s_{1}, t_{1}\right) \sim\left(s_{2}, t_{2}\right)}} E I_{s_{1}, t_{1}}(x) E I_{s_{2}, t_{2}}(x) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}(x, G)=\sum_{\substack{s_{1}, t_{1}}} \sum_{\substack{\left(s_{1}, t_{1}\right) \neq\left(s_{2}, t_{2}\right) \\\left(s_{1}, t_{1}\right) \sim\left(s_{2}, t_{2}\right)}} E\left[I_{s_{1}, t_{1}}(x) I_{s_{2}, t_{2}}(x)\right] . \tag{12}
\end{equation*}
$$

Lemma 3.3. For all $x<\varepsilon \ln n$ and $\delta>0$, we have

$$
\begin{equation*}
B_{1}(x, G)+B_{2}(x, G)=O\left(p_{n}^{2(x+1)} n^{\delta-1}\right) . \tag{13}
\end{equation*}
$$

Proof. From (9), we have $E I_{s, t}(x)=P\left(W_{s, t}^{\prime(n)}>c_{n} \ln n+x\right) \leq p_{n}^{c_{n} \ln n+x+1}$. Since for fixed s and t, the number of pairs $\left(s_{1}, t_{1}\right)$ such that $\left|A(s, t) \cap A\left(s_{1}, t_{1}\right)\right|=k$ is at most $D_{s, t}(k)+1$, we obtain by Lemma 3.2

$$
\begin{align*}
B_{1}(x, G) & \leq \sum_{s, t} \sum_{k=1}^{m+1}\left(D_{s, t}(k)+1\right) p_{n}^{2\left(c_{n} \ln n+x+1\right)} \\
& \leq p_{n}^{2(x+1)} \cdot \frac{1}{n^{4}} \sum_{s, t}\left((m+1)^{2} n+1+\sum_{k=2}^{m / 2+1}\left((m+1)^{2} m^{2}+1\right)\right) \\
& =p_{n}^{2(x+1)} \cdot O\left(\frac{m^{2} n+m^{6}}{n^{2}}\right) \\
& =O\left(p_{n}^{2(x+1)} n^{\delta-1}\right) \tag{14}
\end{align*}
$$

for all $\delta>0$, where the last equality holds using the assumption $c_{n}=o(\ln n)$.
Next, we have $E\left(I_{s, t}(x) I_{s_{1}, t_{1}}(x)\right) \leq p_{n}^{2\left(c_{n} \ln n+x+1\right)-k}$ when $\left|A(s, t) \cap A\left(s_{1}, t_{1}\right)\right|=k$. Therefore, by Lemma 3.2

$$
\begin{align*}
B_{2}(x, G) & \leq \sum_{s, t} \sum_{k=1}^{m} D_{s, t}(k) p_{n}^{2\left(c_{n} \ln n+x+1\right)-k} \\
& \leq p_{n}^{2(x+1)} \cdot \frac{1}{n^{4}} \sum_{s, t}\left(2(m+1)^{2} n+(m+1)^{2} m^{2} \sum_{k=2}^{m / 2+1} p_{n}^{-k}\right) \tag{15}
\end{align*}
$$

Since $c_{n}>\alpha>0$, we obtain

$$
\begin{equation*}
\sum_{k=2}^{m / 2+1} p_{n}^{-k}=O\left(p_{n}^{-\frac{m}{2}}\right)=O\left(n^{\frac{c_{n}+\varepsilon}{c_{n}}}\right) \tag{16}
\end{equation*}
$$

Combining (15), (16) and the assumption $c_{n}=o(\ln n)$, we derive

$$
\begin{align*}
B_{2}(x, G) & =p_{n}^{2(x+1)} \cdot O\left(\frac{m^{2} n+m^{4} n^{\frac{c_{n}+\varepsilon}{c_{n}}}}{n^{2}}\right) \\
& =O\left(p_{n}^{2(x+1)} n^{\delta-1}\right) \tag{17}
\end{align*}
$$

for all $\delta>0$.
The following lemma is a simplified version of Theorem 2.1.
Lemma 3.4. $W^{(n)} / c_{n} \ln n$ converges to 1 in probability, as $n \rightarrow \infty$; i.e., for any $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|\frac{W^{(n)}}{c_{n} \ln n}-1\right|>\delta\right)=0 \tag{18}
\end{equation*}
$$

Proof. Fix $\varepsilon>0$, we have

$$
\begin{equation*}
P\left(W_{s, t}^{(n)}>\left(c_{n}+\varepsilon\right) \ln n\right) \leq p_{n}^{\left(c_{n}+\varepsilon\right) \ln n+1} \tag{19}
\end{equation*}
$$

Since $c_{n}=o(\ln n)$, it follows that

$$
\begin{equation*}
P\left(W^{(n)}>\left(c_{n}+\varepsilon\right) \ln n\right) \leq n^{2} p_{n}^{\left(c_{n}+\varepsilon\right) \ln n+1} \leq e^{-\frac{2 \varepsilon \ln n}{c_{n}}} \rightarrow 0 \tag{20}
\end{equation*}
$$

as $n \rightarrow \infty$.
Next, let $x=-\varepsilon \ln n$ and $Z(x)$ be a Poisson random variable with

$$
\begin{equation*}
E Z(x)=\lambda(x)=E S(x)=n^{2} p_{n}^{\left\lfloor c_{n} \ln n+x+2\right\rfloor} \geq e^{\frac{2 \varepsilon \ln n-4}{c_{n}}} . \tag{21}
\end{equation*}
$$

Note that $\left\{W^{(n)} \leq\left(c_{n}-\varepsilon\right) \ln n\right\}$ implies that $\left\{W^{\prime(n)} \leq\left(c_{n}-\varepsilon\right) \ln n\right\}$. By Lemma 3.1 and Lemma 3.3,

$$
\begin{align*}
P\left(W^{(n)} \leq\left(c_{n}-\varepsilon\right) \ln n\right) & \leq P(S(x)=0) \\
& \leq B_{1}(x, G)+B_{2}(x, G)+P(Z(x)=0) \\
& =O\left(p_{n}^{2(x+1)} n^{\delta-1}+e^{-e^{\frac{2 \varepsilon \ln n-4}{c_{n}}}}\right) \rightarrow 0, \tag{22}
\end{align*}
$$

as $n \rightarrow \infty$, for $\delta>0$ and $\varepsilon<\alpha / 5$. Thus, by (20) and (22), it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|\frac{W^{(n)}}{c_{n} \ln n}-1\right|>\delta\right)=0 \tag{23}
\end{equation*}
$$

for any $0<\delta<1 / 5$.
To prove of Theorem 2.1, we need to further refine the proof of Lemma 3.4.
Proof of Theorem 2.1. As in the proof of Lemma 3.4, let $Z(x)$ be a Poisson random variable with

$$
\begin{equation*}
E Z(x)=\lambda(x)=E S(x)=n^{2} p_{n}^{\left\lfloor c_{n} \ln n+x+2\right\rfloor} . \tag{24}
\end{equation*}
$$

If $c_{n} \ln n+x \in \mathbb{Z}$, then $\lambda(x)=p_{n}^{x+2}$. Recall that $W^{\prime(n)}>c_{n} \ln n+x$ if and only if $S(x)>0$. Thus, by Lemma 3.1 and Lemma 3.3

$$
\begin{align*}
\left|P\left(W^{\prime(n)}>c_{n} \ln n+x\right)-P(Z(x) \neq 0)\right| & =|P(S(x)>0)-P(Z(x)>0)| \\
& \leq B_{1}(x, G)+B_{2}(x, G) \\
& =O\left(p_{n}^{2(x+1)} n^{\delta-1}\right) . \tag{25}
\end{align*}
$$

Note that $x<\varepsilon \ln n$, and then we have

$$
\begin{equation*}
\left\{W^{(n)}>c_{n} \ln n+x\right\}=\left\{W^{(n)}>(c+\varepsilon) \ln n\right\} \cup\left\{W^{\prime(n)}>c_{n} \ln n+x\right\} . \tag{26}
\end{equation*}
$$

Hence, by (20), (25) and (26), we obtain

$$
\begin{align*}
\left|P\left(W^{(n)} \leq c_{n} \ln n+x\right)-e^{-\lambda(x)}\right|= & \left|P\left(W^{(n)}>c_{n} \ln n+x\right)-P(Z(x) \neq 0)\right| \\
\leq & P\left(W^{(n)}>\left(c_{n}+\varepsilon\right) \ln n\right) \\
& +\left|P\left(W^{\prime(n)}>c_{n} \ln n+x\right)-P(Z(x) \neq 0)\right| \\
\leq & e^{-\frac{2 \varepsilon \ln n}{c_{n}}}+O\left(p_{n}^{2(x+1)} n^{\delta-1}\right), \tag{27}
\end{align*}
$$

for $0<\delta<1$, where the first item on the right-hand side of (27) tends to 0 as $n \rightarrow \infty$.
Let $\left\{x_{n}\right\}$ be a sequence such that $c_{n} \ln n+x_{n} \in \mathbb{Z}$ for all n. If $\inf _{n} x_{n} \geq \beta \in \mathbb{R}$, then $p_{n}^{2\left(x_{n}+1\right)} n^{\delta-1} \rightarrow 0$ and $e^{\lambda\left(x_{n}\right)}$ is a bounded sequence. Thus, from (27) it follows that

$$
\begin{equation*}
\left|e^{\lambda\left(x_{n}\right)} P\left(W^{(n)} \leq c_{n} \ln n+x_{n}\right)-1\right|=O\left(e^{-\frac{2 \varepsilon \ln n}{c_{n}}}+p_{n}^{2\left(x_{n}+1\right)} n^{\delta-1}\right) \rightarrow 0 \tag{28}
\end{equation*}
$$

as $n \rightarrow \infty$.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley \& Sons, New York, 2008.
[2] R. Arratia, L. Goldstein and L. Gordon, Two moments suffice for Poisson approximations: the Chen-Stein method, Ann. Probab., 17(1989), 9-25.
[3] I. Benjamini, A. Yadin and O. Zeitouni, Maximal arithmetic progressions in random subsets, Elect. Comm. in Probab., 12(2007), 365-376.
[4]S. Janson, T. Łuczak and A. Rucinski, Random Graphs, John Wiley \& Sons, New York, 2000.
[5] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27(1975), 299-345.
[6] T. Tao, What is good mathematics? Bull. Amer. Math. Soc., 44(2007), 623-634.

