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We propose here a new type of Gravitational Shielding. This is a quantum device because 
results from the behaviour of the matter  and energy  on the subatomic length scale. From 
the technical point of view this Gravitational Shielding can be produced in laminas with 
positive electric charge, subjected to a magnetic field sufficiently intense. It is easy to 
build, and can be used to develop several devices for gravity control. 
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1. Introduction 
 
         Some years ago [1] I wrote a paper 
where a correlation between gravitational 
mass and inertial mass was obtained. In the 
paper I pointed out that the relationship 
between gravitational mass, , and rest 
inertial mass, , is given by  
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where  is the variation in the particle’s kinetic 
momentum;  is the electromagnetic energy 
absorbed or emitted by the particle;  is the 
index of refraction of the particle;  is the 
density of energy on the particle ;

pΔ
U

rn
W

( )kgJ / ρ  is 
the matter density ( )3mkg  and  is the 
speed of light.  

c

          Also it was shown that, if the weight of 
a particle in a side of a lamina is gmP g

rr
=  

(  perpendicular to the lamina) then the 
weight of the same particle, in the other side 
of the lamina is , where 
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the gravitational mass and the inertial mass 
of the lamina). Only when 1=χ , the weight 
is equal in both sides of the lamina. The 
lamina works as a Gravitational Shielding. 
This is the Gravitational Shielding effect. 
Since ( ) ( gmgmPP gg )χχχ ===′ , we can 
consider that gg mm χ=′  or that gg χ=′ .  
          In the last years I have proposed 
several types of Gravitational Shieldings. 
Here, I describe the Quantum   Gravitational 
Shielding. This quantum device is easy to 
build and can be used in order to test the 
correlation between gravitational mass and 
inertial mass previously obtained. 
              
2. Theory 
 
          Consider a conducting spherical shell 
with outer radius r . From the subatomic 
viewpoint the region with thickness of 

eφ (diameter of an electron) in the border of  
the spherical shell (See Fig.1 (a)) contains an 
amount, , of electrons. Since the number 
of atoms per , , in the spherical shell is 
given by 

eN
3m an

( )20
s

s
a A

N
n

ρ
=

where , is 
the Avogadro’s number; 

kmoleatomsN /. 26
0 10022141296 ×=

sρ  is the matter 
density of the spherical shell (in kg/m3) and 

sA  is the molar mass ( ). Then, at 
a volume 

1−kmolekg .
Sφ of the spherical shell, there are 

atoms per , where aN 3m
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Fig.1 – Subatomic view of the border of the conducting spherical shell. 
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( )3SnN aa φ=

Similarly, if there are electrons per  in the 
same volume 

en 3m
Sφ , then we can write that 

( )4SnN ee φ=
By dividing both sides of Eq. (3) by , given 
by Eq. (4), we get 
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Then, the amount of electrons, in the border of 
the spherical shell, at the region with thickness of 

eφ  is 
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          Assuming that in the border of the 
spherical shell, at the region with thickness of 

2ax φ≅  (See Fig.1 (b)), each atom contributes 
with approximately 2Z electrons ( Z is the 
atomic number). Thus, the total number of 

electrons, in this region, is ( ) ( ) ( )eee eNZxN φ2= . 
Thus, we can write that 
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where ( ) 2ZNN xae ≅ . 
          Now, if a potential V is applied on the 
spherical shell an amount of electrons, , is 
removed from the mentioned region. Since 

hN

eqNh = and 2
0 r4qE rεπε= , then we obtain 
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e
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Thus, we can express the matter density, ρ , in 
the border of the spherical shell, at the region 
with thickness of 2ax φ≅ , by means of the 
following equation 
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since rVE = .  

         If the spherical shell is made of Lithium 
( 3=Z , 3534 −= mkgs .ρ , kmolekgAs /.9416= ,

ma
1010043 −×= .φ  and outer radius mr 100.= ) 

and covered with a thin layer ( mμ20 ) of  Barium 
titanate* (BaTiO3), whose relative permittivity at 
20°C is 1250=rε , then Eq. (9) gives 

( ) ( )10210272503321043106853 0
2138

ee mV×−×= .. φρ
            Assuming that the electron is a sphere 
with radius  and surface charge , and that at 

an atomic orbit its total energy  is 
equal to the potential electrostatic energy of the 
surface charge, 

er e−
2

0cmE e≅

reEpot 0
2 8πε=  [2], then these 

conditions determine the radius err ≡ : 

mcmer ee
152

00
2 104142 −×≅= .. πε  †, 

which is equal to the radii of the protons and 
neutrons. Thus, we can conclude that in the atom, 
electrons, protons and neutrons have the same 
radius. Thus, substitution of  

mree
1510822 −×== .φ  into Eq. (10) gives 

 
( ) ( )11210272503321060699189 0

2123
emV×−×= ..ρ

 
For voltsV 7493422.= , Eq. (11) gives 
 

( ) ( )12102121086 315
0

14 −−×=×= mkgme ...ρ  
       Note that the voltage voltsV 7493422.=  is 
only a theoretical value resulting from 
inaccurate values of the constants present in 
the Eq. (11), and that leads to the critical 
value 141086 ×.  shown in Eq. (12), which is 
fundamental to obtain a low density, ρ . 
However, if for example, , 
then the critical value increases 
to (more than 100,000 times the 
initial value) and, therefore the system shown in  

voltsV 7422.=

201011 ×.

 
 
                                           
* Dielectric Strength: mmkV6 , density: 6,020kg/m3. 
† The radius of the electron depends on the 
circumstances (energy, interaction, etc) in which it is 
measured. This is because its structure is easily 
deformable. For example, the radius of a free electron 
is of the order of   [m1310− 3], when accelerated to 
1GeV total energy it has a radius of [m16109.0 −× 4].  
 



 4
 

   
 
 
 
 
 
 
 
                                                                        60 cm 
                                                                                                                                                    30 cm 
 
                                                                                                                                 30 cm  
                                                                                                                         Pair of Helmholtz Coils 
                                                                                                                             (Bmax = 20mT) 
                 
 
 
 
    
                                                                                      B                 
                                                   
 
 
 
 
 
 
                    
 
                  
 
 
           Vmax =  425 volts                                                                      
 
                     Vv                                                                   
           V                                                                                                                             i 
                                                                                
                                                                                
 
                                                                               
 
                                                                               g  
 
 
 
 
 
 
Fig.2 – Quantum Gravitational Shielding produced in the border of a Lithium Spherical Shell with positive
electric charge, subjected to a magnetic field B.  
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Fig.2 will require a magnetic field 402 times 
more intense. In practice, the value of V , 
which should lead to the critical 
value 141086 ×.  or a close value, must be 
found by using a very accurate voltage 
source in order to apply accurate voltages 
around the value voltsV 7493422.=  at ambient 
temperature of  20°C.   
          Substitution of the value of ρ (density 
in the border of the Lithium Spherical Shell, 
at the region with thickness of 2ax φ≅  ), given 
by Eq. (12), into Eq. (1) yields 

( ) ( )1311039121
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Substitution of 
( ) 0

2
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2
2
122

02
12
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into Eq. (13) gives 

( )1411045121 47
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Therefore, if a magnetic field TB 0200.=  
passes through the spherical shell (See Fig. 
(2)) it produces a Gravitational Shielding (in 
the border of the Lithium Spherical Shell, at 
the region with thickness of 2ax φ≅ ) with a 
value of χ , given by 

( )153−≅χ  
            Also, it is possible to build a Flat 
Gravitational Shielding, as shown in Fig. 3. 
Consider a cylindrical or hexagonal container, 
and a parallel plate capacitor, as shown in Fig. 
3(a). When the capacitor is inserted into the 
container the positive charges of the plate of the 
capacitor are transferred to the external surface of 
the container (Gauss law), as shown in Fig. 3(b). 
Thus, in the border of the container, at the region 
with thickness of 2ax φ≅  the density, ρ , will 
be given by Eq. (9), i.e., 

0
00

2
2

2 e
a

r
a
e

s
s m

e
E

A
NZ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

φ
εε

φ
φρρ

where  

( ) ( )16

000

SdVA

SCVSqE

rcr

rrr

εε

εεεεεεσ

=

====
 

 Thus, we obtain 

( ) ( )172
2 0

00
2

e
a

cr

a
e

s
s m

Sde
AV

A
NZ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

φ
εε

φ
φρρ

Therefore, if the container is made of Lithium 
( 3=Z , 3534 −= mkgs .ρ , kmolekgAs /.9416= ,

ma
1010043 −×= .φ ) and, if the dielectric of the 

capacitor is Barium titanate (BaTiO3), whose 
relative permittivity at 20°C is 1250=rε , and 
the area of the capacitor is , and SA = mmd 1= , 
then Eq. (17) gives 

( ) ( )18210272503321060699189 0
2323

emV×−×= ..ρ

For voltsV 2274934.= , Eq. (18) gives 
( ) ( )19102121086 315

0
14 −−×=×= mkgme ...ρ

Substitution of this value into Eq. (1) gives 
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This is exactly the Eq. (13), which leads to   

⎭
⎬
⎫

⎩
⎨
⎧
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⎡ −×+−= 11045121 47 B.χ

Therefore, if a magnetic field TB 0200.=  passes 
through the Lithium container, it produces a 
Quantum Gravitational Shielding (in the border 
of the container, at the region with thickness of 

2ax φ≅ ) with a value of χ , given by 
3−≅χ
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Fig. 3 – Flat Gravitational Shielding or  
     Flat Gravity Control Cell (GCC). 
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Fig. 4 – Flat Gravity Control Cell - Experimental Set-up.  (BR Patent Number: PI0805046-5, July 31, 2008).  
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We propose here a new type of Gravitational Shielding. This is a quantum device because results from the behaviour of the matter  and energy  on the subatomic length scale. From the technical point of view this Gravitational Shielding can be produced in laminas with positive electric charge, subjected to a magnetic field sufficiently intense. It is easy to build, and can be used to develop several devices for gravity control.
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1. Introduction

         Some years ago [1] I wrote a paper where a correlation between gravitational mass and inertial mass was obtained. In the paper I pointed out that the relationship between gravitational mass,
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          In the last years I have proposed several types of Gravitational Shieldings. Here, I describe the Quantum   Gravitational Shielding. This quantum device is easy to build and can be used in order to test the correlation between gravitational mass and inertial mass previously obtained.
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Fig.1 – Subatomic view of the border of the conducting spherical shell.  
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       Note that the voltage 
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Fig.2 – Quantum Gravitational Shielding produced in the border of a Lithium Spherical Shell with positive 


electric charge, subjected to a magnetic field B.  
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Substitution of this value into Eq. (1) gives
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This is exactly the Eq. (13), which leads to  
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Therefore, if a magnetic field 
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Fig. 3 – Flat Gravitational Shielding or  


     Flat Gravity Control Cell (GCC). 
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Fig. 4 – Flat Gravity Control Cell - Experimental Set-up.  (BR Patent Number: PI0805046-5, July 31, 2008).  
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� Dielectric Strength: � EMBED Equation.3  ���, density: 6,020kg/m3.


� The radius of the electron depends on the circumstances (energy, interaction, etc) in which it is measured. This is because its structure is easily deformable. For example, the radius of a free electron is of the order of  � EMBED Equation.3  ��� [� HYPERLINK  \l "zx3" ��3�], when accelerated to 1GeV total energy it has a radius of � EMBED Equation.3  ���[� HYPERLINK  \l "zx4" ��4�]. 
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Fig.2 – Quantum Gravitational Shielding produced in the border of a Lithium Spherical Shell with positive electric charge, subjected to a magnetic field B. 
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Fig. 3 – Flat Gravitational Shielding or 
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Fig. 4 – Flat Gravity Control Cell - Experimental Set-up.  (BR Patent Number: PI0805046-5, July 31, 2008). 
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Fig.1 – Subatomic view of the border of the conducting spherical shell.
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