Primality Tests for Specific Classes of Proth Numbers

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

September 22, 2014

Abstract

Polynomial time primality tests for specific classes of Proth numbers are introduced. Keywords: Primality test, Polynomial time, Prime numbers . AMS Classification: 11A51 .

1 Introduction

Theorem 1.1. (Proth's theorem)

If p is a Proth number, of the form $k \cdot 2^{n}+1$ with k odd and $k<2^{n}$, then if for some integer a,

$$
\begin{gathered}
a^{\frac{p-1}{2}} \equiv-1(\bmod p) \\
\text { then } p \text { is prime } .
\end{gathered}
$$

See [1] .
In this note I present for which classes of Proth numbers we can choose value of $a=3,5,7,11$

2 The Main Result

Theorem 2.1. Let $N=k \cdot 2^{n}+1$ with $n>1, k<2^{n}$ and $3 \nmid k$, thus

$$
N \text { is prime iff } 3^{\frac{N-1}{2}} \equiv-1(\bmod N)
$$

Proof:
Necessity: If N is prime then $3^{\frac{N-1}{2}} \equiv-1(\bmod N)$
Let N be a prime, then according to Euler criterion :

$$
3^{\frac{N-1}{2}} \equiv\left(\frac{3}{N}\right)(\bmod N)
$$

If N is prime then $N \equiv 2(\bmod 3)$ and therefore : $\left(\frac{N}{3}\right)=-1$.
Since $N \equiv 1(\bmod 4)$ according to the law of quadratic reciprocity it follows that : $\left(\frac{3}{N}\right)=-1$.

$$
\text { Hence, } 3^{\frac{N-1}{2}} \equiv-1(\bmod N)
$$

Sufficiency : If $3^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then N is prime

If $3^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then according to Proth's theorem N is prime.
Theorem 2.2. Let $N=k \cdot 2^{n}+1$ with $n>1, k<2^{n}, 3 \mid k$, and

$$
\begin{aligned}
& k \equiv 3(\bmod 30), \text { with } n \equiv 1,2(\bmod 4) \\
& k \equiv 9(\bmod 30), \text { with } n \equiv 2,3(\bmod 4) \\
& k \equiv 21(\bmod 30), \text { with } n \equiv 0,1(\bmod 4) \\
& k \equiv 27(\bmod 30), \text { with } n \equiv 0,3(\bmod 4) \\
&, \text { thus }
\end{aligned}, ~ \begin{aligned}
& N \text { is prime iff } 5^{\frac{N-1}{2}} \equiv-1(\bmod N)
\end{aligned}
$$

Proof :

Necessity: If N is prime then $5^{\frac{N-1}{2}} \equiv-1(\bmod N)$
Let N be a prime, then according to Euler criterion :

$$
5^{\frac{N-1}{2}} \equiv\left(\frac{5}{N}\right)(\bmod N)
$$

If N is a prime then $N \equiv 2,3(\bmod 5)$ and therefore : $\left(\frac{N}{5}\right)=-1$.
Since $N \equiv 1(\bmod 4)$ according to the law of quadratic reciprocity it follows that : $\left(\frac{5}{N}\right)=-1$.

$$
\text { Hence, } 5^{\frac{N-1}{2}} \equiv-1(\bmod N)
$$

Sufficiency: If $5^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then N is prime

$$
\text { If } 5^{\frac{N-1}{2}} \equiv-1(\bmod N) \text { then according to Proth's theorem } N \text { is prime } .
$$

Theorem 2.3. Let $N=k \cdot 2^{n}+1$ with $n>1, k<2^{n}, 3 \mid k$, and

$$
\begin{aligned}
& \begin{cases}k \equiv 3(\bmod 42), & \text { with } n \equiv 2(\bmod 3) \\
k \equiv 9(\bmod 42), & \text { with } n \equiv 0,1(\bmod 3) \\
k \equiv 15(\bmod 42), & \text { with } n \equiv 1,2(\bmod 3) \\
k \equiv 27(\bmod 42), & \text { with } n \equiv 1(\bmod 3) \\
k \equiv 33(\bmod 42), & \text { with } n \equiv 0(\bmod 3) \\
k \equiv 39(\bmod 42), & \text { with } n \equiv 0,2(\bmod 3) \\
, \text { thus }\end{cases} \\
& N \text { is prime iff } 7^{\frac{N-1}{2}} \equiv-1(\bmod N)
\end{aligned}
$$

Proof :

Necessity: If N is prime then $7^{\frac{N-1}{2}} \equiv-1(\bmod N)$
Let N be a prime, then according to Euler criterion :

$$
7^{\frac{N-1}{2}} \equiv\left(\frac{7}{N}\right)(\bmod N)
$$

If N is prime then $N \equiv 3,5,6(\bmod 7)$ and therefore : $\left(\frac{N}{7}\right)=-1$.
Since $N \equiv 1(\bmod 4)$ according to the law of quadratic reciprocity it follows that : $\left(\frac{7}{N}\right)=-1$.

$$
\text { Hence, } 7^{\frac{N-1}{2}} \equiv-1(\bmod N)
$$

Sufficiency : If $7^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then N is prime

If $7^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then according to Proth's theorem N is prime.
Theorem 2.4. Let $N=k \cdot 2^{n}+1$ with $n>1, k<2^{n}, 3 \mid k$, and

Proof:

Necessity : If N is prime then $11^{\frac{N-1}{2}} \equiv-1(\bmod N)$
Let N be a prime, then according to Euler criterion :

$$
11^{\frac{N-1}{2}} \equiv\left(\frac{11}{N}\right) \quad(\bmod N)
$$

If N is prime then $N \equiv 2,6,7,8,10(\bmod 11)$ and therefore : $\left(\frac{N}{11}\right)=-1$.
Since $N \equiv 1(\bmod 4)$ according to the law of quadratic reciprocity it follows that : $\left(\frac{11}{N}\right)=-1$. Hence, $11^{\frac{N-1}{2}} \equiv-1(\bmod N)$.

Sufficiency: If $11^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then N is prime
If $11^{\frac{N-1}{2}} \equiv-1(\bmod N)$ then according to Proth's theorem N is prime.

References

[1] "Proth's theorem" Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc.

