Primality Tests for Specific Classes of Proth Numbers

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

September 22, 2014

Abstract: Polynomial time primality tests for specific classes of Proth numbers are introduced .Keywords: Primality test , Polynomial time , Prime numbers .AMS Classification: 11A51 .

1 Introduction

Theorem 1.1. (*Proth's theorem*) If p is a Proth number, of the form $k \cdot 2^n + 1$ with k odd and $k < 2^n$, then if for some integer a,

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$$

then p is prime.

See [1] .

In this note I present for which classes of Proth numbers we can choose value of a = 3, 5, 7, 11

2 The Main Result

Theorem 2.1. Let $N = k \cdot 2^n + 1$ with n > 1, $k < 2^n$ and $3 \nmid k$, thus

N is prime iff
$$3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$$

Proof:

Necessity : If N is prime then $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Let N be a prime, then according to Euler criterion : $2^{\frac{N-1}{2}} = (3) (3 + 1)^{N}$

$$3^{\frac{N-1}{2}} \equiv \left(\frac{3}{N}\right) \pmod{N}$$

If N is prime then $N \equiv 2 \pmod{3}$ and therefore : $\binom{N}{3} = -1$.

Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that : $\left(\frac{3}{N}\right) = -1$. Hence, $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : If $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then N is prime

If $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then according to Proth's theorem N is prime .

Theorem 2.2. Let $N = k \cdot 2^n + 1$ with n > 1, $k < 2^n$, $3 \mid k$, and

 $\begin{cases} k \equiv 3 \pmod{30}, & \text{with } n \equiv 1, 2 \pmod{4} \\ k \equiv 9 \pmod{30}, & \text{with } n \equiv 2, 3 \pmod{4} \\ k \equiv 21 \pmod{30}, & \text{with } n \equiv 0, 1 \pmod{4} \\ k \equiv 27 \pmod{30}, & \text{with } n \equiv 0, 3 \pmod{4} \end{cases}$ N is prime iff $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Proof:

Necessity : If N is prime then $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Let N be a prime , then according to Euler criterion :

$$\frac{N-1}{2} \equiv \left(\frac{5}{N}\right) \pmod{N}$$

 $5^{\frac{N-1}{2}} \equiv \left(\frac{5}{N}\right) \pmod{N}$ If N is a prime then $N \equiv 2, 3 \pmod{5}$ and therefore : $\left(\frac{N}{5}\right) = -1$. Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that : $\left(\frac{5}{N}\right) = -1$. Hence, $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : If $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then N is prime

If $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then according to Proth's theorem N is prime .

Theorem 2.3. Let $N = k \cdot 2^n + 1$ with n > 1, $k < 2^n$, $3 \mid k$, and

$$\begin{cases} k \equiv 3 \pmod{42}, & \text{with } n \equiv 2 \pmod{3} \\ k \equiv 9 \pmod{42}, & \text{with } n \equiv 0, 1 \pmod{3} \\ k \equiv 15 \pmod{42}, & \text{with } n \equiv 1, 2 \pmod{3} \\ k \equiv 27 \pmod{42}, & \text{with } n \equiv 1 \pmod{3} \\ k \equiv 33 \pmod{42}, & \text{with } n \equiv 0 \pmod{3} \\ k \equiv 39 \pmod{42}, & \text{with } n \equiv 0, 2 \pmod{3} \\ \text{, thus} \\ N \text{ is prime iff } 7^{\frac{N-1}{2}} \equiv -1 \pmod{N} \end{cases}$$

Proof:

Necessity : If N is prime then $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Let N be a prime , then according to Euler criterion :

$$7^{\frac{N-1}{2}} \equiv \left(\frac{7}{N}\right) \pmod{N}$$
If N is prime then $N \equiv 3, 5, 6 \pmod{7}$ and therefore : $\left(\frac{N}{7}\right) = -1$.

Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that : $\left(\frac{7}{N}\right) = -1$. Hence, $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : If $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then N is prime

If $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then according to Proth's theorem N is prime .

Theorem 2.4. Let $N = k \cdot 2^n + 1$ with n > 1 , $k < 2^n$, $3 \mid k$, and

$$k \equiv 3 \pmod{66}, \quad with \ n \equiv 1, 2, 6, 8, 9 \pmod{10}$$

$$k \equiv 9 \pmod{66}, \quad with \ n \equiv 0, 1, 3, 4, 8 \pmod{10}$$

$$k \equiv 15 \pmod{66}, \quad with \ n \equiv 2, 4, 5, 7, 8 \pmod{10}$$

$$k \equiv 21 \pmod{66}, \quad with \ n \equiv 1, 2, 4, 5, 9 \pmod{10}$$

$$k \equiv 27 \pmod{66}, \quad with \ n \equiv 0, 2, 3, 5, 6 \pmod{10}$$

$$k \equiv 39 \pmod{66}, \quad with \ n \equiv 0, 1, 5, 7, 8 \pmod{10}$$

$$k \equiv 51 \pmod{66}, \quad with \ n \equiv 0, 2, 3, 7, 9 \pmod{10}$$

$$k \equiv 57 \pmod{66}, \quad with \ n \equiv 1, 3, 4, 6, 7 \pmod{10}$$

$$k \equiv 63 \pmod{66}, \quad with \ n \equiv 1, 3, 4, 6, 7 \pmod{10}$$

$$rac{hus}{N \ is \ prime \ iff \ 11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$$

Proof:

Necessity : If N is prime then $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Let N be a prime , then according to Euler criterion :

$$11^{\frac{N-1}{2}} \equiv \left(\frac{11}{N}\right) \pmod{N}$$

If N is prime then $N \equiv 2, 6, 7, 8, 10 \pmod{11}$ and therefore : $\binom{N}{11} = -1$. Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that: $\left(\frac{11}{N}\right) = -1$. Hence, $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : If $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then N is prime

If $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then according to Proth's theorem N is prime.

References

[1] "Proth's theorem" Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc.