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1 Introduction

Theorem 1.1. (Proth’s theorem)
If p is a Proth number , of the form k · 2n + 1 with k odd and k < 2n , then if for some integer a ,

a
p−1
2 ≡ −1 (mod p)

then p is prime .

See [1] .
In this note I present for which classes of Proth numbers we can choose value of a = 3, 5, 7, 11

2 The Main Result

Theorem 2.1. Let N = k · 2n + 1 with n > 1 , k < 2n and 3 - k , thus

N is prime iff 3
N−1

2 ≡ −1 (mod N)

Proof :
Necessity : If N is prime then 3

N−1
2 ≡ −1 (mod N)

Let N be a prime , then according to Euler criterion :
3

N−1
2 ≡

(
3
N

)
(mod N)

If N is prime then N ≡ 2 (mod 3) and therefore :
(
N
3

)
= −1 .

Since N ≡ 1 (mod 4) according to the law of quadratic reciprocity it follows that :
(

3
N

)
= −1 .

Hence , 3
N−1

2 ≡ −1 (mod N) .

Sufficiency : If 3
N−1

2 ≡ −1 (mod N) then N is prime
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If 3
N−1

2 ≡ −1 (mod N) then according to Proth’s theorem N is prime .

Theorem 2.2. Let N = k · 2n + 1 with n > 1 , k < 2n , 3 | k , and
k ≡ 3 (mod 30), with n ≡ 1, 2 (mod 4)

k ≡ 9 (mod 30), with n ≡ 2, 3 (mod 4)

k ≡ 21 (mod 30), with n ≡ 0, 1 (mod 4)

k ≡ 27 (mod 30), with n ≡ 0, 3 (mod 4)

, thus
N is prime iff 5

N−1
2 ≡ −1 (mod N)

Proof :
Necessity : If N is prime then 5

N−1
2 ≡ −1 (mod N)

Let N be a prime , then according to Euler criterion :
5

N−1
2 ≡

(
5
N

)
(mod N)

If N is a prime then N ≡ 2, 3 (mod 5) and therefore :
(
N
5

)
= −1 .

Since N ≡ 1 (mod 4) according to the law of quadratic reciprocity it follows that :
(

5
N

)
= −1 .

Hence , 5
N−1

2 ≡ −1 (mod N) .

Sufficiency : If 5
N−1

2 ≡ −1 (mod N) then N is prime

If 5
N−1

2 ≡ −1 (mod N) then according to Proth’s theorem N is prime .

Theorem 2.3. Let N = k · 2n + 1 with n > 1 , k < 2n , 3 | k , and

k ≡ 3 (mod 42), with n ≡ 2 (mod 3)

k ≡ 9 (mod 42), with n ≡ 0, 1 (mod 3)

k ≡ 15 (mod 42), with n ≡ 1, 2 (mod 3)

k ≡ 27 (mod 42), with n ≡ 1 (mod 3)

k ≡ 33 (mod 42), with n ≡ 0 (mod 3)

k ≡ 39 (mod 42), with n ≡ 0, 2 (mod 3)

, thus
N is prime iff 7

N−1
2 ≡ −1 (mod N)

Proof :
Necessity : If N is prime then 7

N−1
2 ≡ −1 (mod N)

Let N be a prime , then according to Euler criterion :
7

N−1
2 ≡

(
7
N

)
(mod N)

If N is prime then N ≡ 3, 5, 6 (mod 7) and therefore :
(
N
7

)
= −1 .

Since N ≡ 1 (mod 4) according to the law of quadratic reciprocity it follows that :
(

7
N

)
= −1 .

Hence , 7
N−1

2 ≡ −1 (mod N) .

Sufficiency : If 7
N−1

2 ≡ −1 (mod N) then N is prime
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If 7
N−1

2 ≡ −1 (mod N) then according to Proth’s theorem N is prime .

Theorem 2.4. Let N = k · 2n + 1 with n > 1 , k < 2n , 3 | k , and

k ≡ 3 (mod 66), with n ≡ 1, 2, 6, 8, 9 (mod 10)

k ≡ 9 (mod 66), with n ≡ 0, 1, 3, 4, 8 (mod 10)

k ≡ 15 (mod 66), with n ≡ 2, 4, 5, 7, 8 (mod 10)

k ≡ 21 (mod 66), with n ≡ 1, 2, 4, 5, 9 (mod 10)

k ≡ 27 (mod 66), with n ≡ 0, 2, 3, 5, 6 (mod 10)

k ≡ 39 (mod 66), with n ≡ 0, 1, 5, 7, 8 (mod 10)

k ≡ 45 (mod 66), with n ≡ 0, 4, 6, 7, 9 (mod 10)

k ≡ 51 (mod 66), with n ≡ 0, 2, 3, 7, 9 (mod 10)

k ≡ 57 (mod 66), with n ≡ 3, 5, 6, 8, 9 (mod 10)

k ≡ 63 (mod 66), with n ≡ 1, 3, 4, 6, 7 (mod 10)

, thus
N is prime iff 11

N−1
2 ≡ −1 (mod N)

Proof :
Necessity : If N is prime then 11

N−1
2 ≡ −1 (mod N)

Let N be a prime , then according to Euler criterion :
11

N−1
2 ≡

(
11
N

)
(mod N)

If N is prime then N ≡ 2, 6, 7, 8, 10 (mod 11) and therefore :
(
N
11

)
= −1 .

Since N ≡ 1 (mod 4) according to the law of quadratic reciprocity it follows that :
(
11
N

)
= −1 .

Hence , 11
N−1

2 ≡ −1 (mod N) .

Sufficiency : If 11
N−1

2 ≡ −1 (mod N) then N is prime

If 11
N−1

2 ≡ −1 (mod N) then according to Proth’s theorem N is prime .
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