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1 Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed random variables with
common distribution function (df) F (x). Suppose that there exist constants an > 0, bn ∈ R and a
non-degenerate distribution G(x) such that

lim
n→∞P (Mn ≤ anx + bn) = lim

n→∞Fn(anx + bn) = G(x) (1.1)

for all x ∈ C(G), the set of all continuity points of G, where Mn = max1≤i≤n Xi denotes the largest
of the first n. Then G(x) must belong to one of the following three classes:

Φα(x) =

{
0, if x < 0,

exp{−x−α}, if x ≥ 0,

Ψα(x) =

{
exp{−(−x)α}, if x < 0,

1, if x ≥ 0,

Λ(x) = exp{−e−x}, x ∈ R,

where α is one positive parameter. We say that F is in the max domain of attraction of G if (1.1)
holds, denoted by F ∈ Dl(G). Criteria for F ∈ Dl(G) and the choice of normalizing constants an

and bn can be found in Galambos[1], Leadbetter et al.[2], Resnick[3], and De Haan and Ferreira[4].

The limit distributions of maxima under power normalization was first derived by Pancheva[5].
A df F is said to belong to the max domain of attraction of a non-degenerate df H under power
normalization, written as F ∈ Dp(H), if there exist constants αn > 0 and βn > 0 such that

lim
n→∞P (

∣∣∣∣
Mn

αn

∣∣∣∣
1

βn

sign(Mn) ≤ x) = lim
n→∞Fn(αn|x|βn sign(x)) = H(x), (1.2)
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where sign(x) = −1, 0 or 1 according as x < 0, x = 0 or x > 0. Pancheva[5] showed that H can be
one of only power types of df ’s, that is:

H1,α(x) =

{
0, if x ≤ 1,

exp{−(log x)−α}, if x > 1,

H2,α(x) =





0, if x ≤ 0,

exp{−(− log x)α}, if 0 < x < 1,

1, if x ≥ 1,

H3,α(x) =





0, if x ≤ −1,

exp{−(− log(−x))−α}, if − 1 < x < 0,

1, if x ≥ 0,

H4,α(x) =

{
exp{−(− log(−x))α}, if x < −1,

1, if x ≥ −1,

H5,α(x) = Φ1(x) =

{
0, if x ≤ 0,

exp{−x−1}, if x > 0,

H6,α(x) = Ψ1(x) =

{
exp{x}, if x < 0,

1, if x ≥ 0,

where α is a positive parameter. Necessary and sufficient conditions for F to satisfy (1.2) have been
given by Christoph and Fark[6], Mohan and Ravi[7], Mohan and Subramanya[8] and Subramanya[9].

The logarithmic normal distribution (lognormal distribution for short) is one of the most
widely applied distributions in statistics, biology and some other disciplines. In this paper, we are
interested in considering the uniform rate of convergence of (1.2) with Xn following the lognormal
distribution. The probability density function of the lognormal distribution is given by

F ′(x) =
x−1

√
2π

exp
{
−(log x)2

2

}
, x > 0.

One interesting problem in extreme value analysis is to estimate the rate of uniform conver-
gence of Fn(·) to its extreme value distribution. For power normalization, Chen et al.[10] derived
convergence rates of the distribution of maxima for random variables obeying the general error dis-
tribution. Convergence rates of distributions of extremes under linear normalization, see De Haan
and Resnick[11] under second-order regular variation and special cases see Hall[12] and Nair[13] for
normal distribution, which also is extended to those such as general error distribution, logarithmic
general error distribution, see recent work of Peng et al.[14] and Liao and Peng[15]. For other
related work on the convergence rates of some given distributions, see Castro[16] for the gamma
distribution, Lin et al.[17] for the short-tailed symmetric distribution due to Tiku and Vaughan[18],
and Liao et al.[19] for skew normal distribution which extended the results of Nair[13]. The aim
of this paper is to study the uniform and point-wise convergence rates of the distribution of power
normalized maxima under power normalization to its limits, respectively.

The contents of this article is organized as follows: some auxiliary results are given in Section
2. In Section 3, we provide our main results with related proofs are deferred to Section 4.
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2 Preliminaries

To prove our results, we first cite some results from Liao and Peng[15], Mohan and Ravi[7].

In the sequel, let {Xn, n ≥ 1} be a sequence of independent identically distributed random vari-
ables with common df F which follows the lognormal distribution. As before, let Mn = max1≤i≤n Xi

represent the partial maximum of {Xn, n ≥ 1}. Liao and Peng[15] defined

an =
exp

(
(2 log n)1/2

)

(2 log n)1/2
, bn = (exp((2 log n)1/2))

(
1− log 4π + log log n

2(2 log n)1/2

)
, (2.1)

and obtained
lim

n→∞P ((Mn − bn)/an ≤ x) = exp(−e−x) =: Λ(x). (2.2)

From (2.2) we immediately derive F ∈ Dl(Λ). The following Mills ratio of the lognormal distribution
is due to Liao and Peng[15]:

1− F (x)
F ′(x)

∼ x

log x
, (2.3)

as x → ∞, where F ′(x) is the density function of the lognormal distribution F (x). According to
Liao and Peng[15], we have

1− F (x) = c(x) exp
(
−

∫ x

e

g(t)
f(t)

dt

)
,

for sufficiently large x, where c(x) → (2πe)−1/2 as x →∞, g(x) = 1 + (log x)−2 and

f(x) =
x

log x
. (2.4)

Noting that f ′(x) → 0 and g(x) → 1 as x →∞.

Lemma 2.1. [15] Let F denote the lognormal distribution function. Then

1− F (x) =
1√
2π

(log x)−1 exp (−(log x)2

2
)− γ(x) (2.5)

=
1√
2π

(log x)−1 exp (−(log x)2

2
)
(
1− (log x)−2

)
+ S(x), (2.6)

for x > 1, where

0 < γ(x) <
1√
2π

(log x)−3 exp (−(log x)2

2
) (2.7)

and

0 < S(x) <
3√
2π

(log x)−5 exp (−(log x)2

2
). (2.8)

In order to obtain the main results, we need the following two lemmas.

Lemma 2.2. [7] Let F denote a df and r(F ) = sup{x : F (x) < 1}. Suppose that F ∈ Dl(Λ) and
r(F ) = ∞, then F ∈ Dp(Φ1), where normalizing constants αn = bn, βn = an/bn.
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Lemma 2.3. [7] Let F denote a df , if F ∈ Dp(Φ1) if and only if

(i)r(F ) > 0, and

(ii) limt↑r(F )
1−F (t exp(yf̄(t)))

1−F (t) = e−y, for some positive valued function f .

If (ii) holds for some f̄ , then
∫ r(F )
a ((1− F (x))/x) dx < ∞ for 0 < a < r(F ) and (ii) holds with

the choice f̄(t) =
∫ r(F )
t ((1− F (x))/x) dx/(1− F (t)). The normalizing constants may be chosen as

αn = F←(1− 1/n) and βn = f̄(αn), where F←(x) = inf{y : 1− F (y) ≥ x}.
Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of independent identically distributed lognormal
random variables. Then F ∈ Dp(Φ1) and the normalizing constants can be chosen as α∗n = bn, β∗n =
an/bn, where an and bn are given by (2.1).

Proof. Note that F follows the lognormal distribution, which implies F ∈ Dp(Φ1) and α∗n =
bn, β∗n = an/bn by Lemma 2.2, where an and bn are defined by (2.1).

By Lemma 2.3 and (2.3) and combining with Proposition 1.1(a)[3], a natural way to choose
constants αn and βn is to solve the following equations:

2π(log αn)2 exp((log αn)2) = n2 (2.9)

and
βn =

f(αn)
αn

=
1

log αn
, (2.10)

where f is given by (2.4). The solution of (2.9) may be expression as

αn = (exp((2 log n)1/2))
(

1− log 4π + log log n

2(2 log n)1/2
+ o(

1
(log n)1/2

)
)

(2.11)

and easily check that βn ∼ (2 log n)−1/2.

3 Main results

In this section, we give two main results. Theorem 3.1 proves the result that the rate of
uniform convergence of Fn(αnxβn) to its extreme value limit is proportional to 1/ log n. Theorem
3.2 establishes the result that the pointwise rate of convergence of |Mn/αn|1/βn sign(Mn) to the
extreme value df exp(−x−1) is of the order of O(x−1e−1/x(log n)−1).

Theorem 3.1. Let {Xn, n ≥ 1} denote an independent identically distributed random variables se-
quence with common df F following the lognormal distribution. Then there exist absolute constants
0 < C1 < C2 such that

C1

log n
< sup

x>0
|Fn(αnxβn)− Φ1(x)| < C2

log n

for large n > n0, where αn and βn are determined by (2.9) and (2.10), respectively.

Theorem 3.2. Let αn and βn be given by (2.9) and (2.10). Then, for large n

|Fn(αnxβn)− Φ1(x)| ∼ x−1e−1/x 1
log n

,

as x > 0.
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4 Proofs

Firstly, we provide the proof of Theorem 3.2 for it is relatively easy.

Proof of Theorem 3.2. By Lemma 2.1, we have

1− F (αnxβn) =
1√
2π

(log(αnxβn))−1 exp(−(log(αnxβn))2

2
)

× (1− (log(αnxβn))−2) + S(αnxβn)
=: T1(x)T2(x) + T3(x)

for x > 0, where T1(x) = 1√
2π

(log(αnxβn))−1 exp(− (log(αnxβn ))2

2 ), T2(x) = 1 − (log(αnxβn))−2 and

T3(x) = S(αnxβn).
Firstly, we calculate the T1(x). By (2.9) and (2.10), we have

T1(x) =
1√
2π

(log αn)−1 exp
(
−(log αn)2

2

)
(1 + (log αn)−1βn log x)−1

× exp
(
−(log αn)βn log x− β2

n log2 x

2

)

=
1

nx
(1 + β2

n log x)−1 exp
(
−β2

n log2 x

2

)

=
1

nx
(1− β2

n log x + O(β4
n))

(
1− β2

n log2 x

2
+ O(β4

n)
)

=
1

nx

(
1− β2

n(1 +
1
2

log x) log x + O(β4
n)

)
. (4.1)

Secondly, we estimate the T2(x) and the T3(x) for x > 0. By (2.10), we derive

T2(x) = 1− β2
n(1 + β2

n log x)−2

= 1− β2
n(1− 2β2

n log x + O(β4
n))

= 1− β2
n + O(β4

n), (4.2)

and by Lemma 2.1, we have

T3(x) ≤ 3√
2π

(log(αnxβn))−5 exp
(
−(log(αnxβn))2

2

)

= 3β4
n(1 + β2

n log x)−4T1(x)

= O(n−1β4
n). (4.3)

By (4.1)-(4.3), we have

1− Fn(αnxβn) =
1

nx

(
1− β2

n(1 + (1 +
1
2

log x) log x) + O(β4
n)

)
.

Thus, we obtain

Fn(αnxβn)− Φ1(x) =
(

1− 1
nx

(1− β2
n(1 + (1 +

1
2

log x) log x) + O(β4
n))

)n

− exp(−1
x

)
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=exp(−1
x

)
(

exp(
1
x

(β2
n(1 + (1 +

1
2

log x) log x) + O(β4
n)))− 1

)

=exp(−1
x

)
(

β2
n

1
x

(1 + (1 +
1
2

log x) log x) + O(β4
n)

)
(4.4)

for large n and x > 0. We immediately get the result of Theorem 3.2 by (4.4).

Proof of Theorem 3.1. By Theorem 3.2 we can prove that there exists an absolute constant C1

such that
sup
x>0

|Fn(αnxβn)− Φ1(x)| > C1

log n
.

In order to obtain the upper bound for x > 0, we need to prove:

(a). sup
1≤x<∞

|Fn(αnxβn)− Φ1(x)| < d1β
2
n, (4.5)

(b). sup
cn≤x<1

|Fn(αnxβn)− Φ1(x)| < d2β
2
n, (4.6)

(c). sup
0<x<cn

|Fn(αnxβn)− Φ1(x)| < d3β
2
n, (4.7)

for n > n0, where di > 0, i = 1, 2, 3 are absolute constants and

cn =
1

2 log log αn

is positive for n > n0. By (2.9), we have

0.4(2 log n)1/2 < log αn < (2 log n)1/2

for n > n0.

Firstly, consider the case of x ≥ cn. Set

Rn(x) = −[n log F (αnxβn) + nΨn(x)], Bn(x) = exp(−Rn), An(x) = exp(−nΨn(x) +
1
x

),

where Ψn(x) = 1− F (αnxβn) and An(x) → 1, as x →∞. Since

Ψn(x) ≤ Ψn(cn) <
1√
2π

(log(αncβn
n ))−1 exp

(
−(log(αncβn

n ))2

2

)

=
1
n

(1 + β2
n log cn)−1 exp

(
− log cn − β2

n log2 cn

2

)

<
1
n

(1 + β2
n log cn)−1c−1

n

=
(

1− log(2 log log αn)
(log αn)2

)−1 2 log log αn

n

< c̃4 < 1

for n > n0. So,
inf

x>cn

(1−Ψn(x)) > 1− c̃4 > 0.

Since

−x− x2

2(1− x)
< log(1− x) < −x,
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for 0 < x < 1, we obtain

0 < Rn(x) ≤ nΨ2
n(x)

2(1−Ψn(x))
<

nΨ2
n(cn)

2(1−Ψn(x))

<
n−1(1 + β2

n log cn)−2c−2
n

2(1−Ψn(x))

<
n−1(1 + β2

n log cn)−2c−2
n (log αn)2

2(1− c̃4)β−2
n

=
2√

2π(1− c̃4)

(
1− log(2 log log αn)

(log αn)2

)−2 (log log αn)2 log αn

exp( (log αn)2

2 )
β2

n

< c̃5β
2
n

for n > n0.
Hence, we have

n−1β−2
n (1 + β2

n log cn)−2c−2
n < c̃6

for n > n0. Thus,

|Bn(x)− 1| < Rn < c̃5β
2
n, (4.8)

for n > n0. By (4.8), we have

|Fn(αnxβn)− Φ1(x)|
≤ Φ1(x)Bn(x)|An(x)− 1|+ |Bn(x)− 1|
< Φ1(x)|An(x)− 1|+ c̃5β

2
n (4.9)

for x ≥ cn.

We now prove (4.5). By (2.9), (2.10) and the definition of An(x), we have

A′n(x) = An(x)
(

1
x1+βn

log αn

αn
exp(−1

2
β2

n log2 x)− 1
x2

)

< 0

for x > 1. Since

0 < nγ(αn) < β2
n, and ex − 1 ≤ xex, for 0 ≤ x ≤ 1,

and exp(nγ(αn)) < exp(β2
n) < exp(

25
8 log n

) < exp(
25

8 log n0
), for n > n0,

and by (2.5), (2.9), we have

sup
x≥1

|An(x)− 1| = |An(1)− 1|

= | exp(nγ(αn))− 1|
≤ nγ(αn) exp(nγ(αn))

≤ c̃7β
2
n (4.10)
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for n > n0.
Combine (4.9) with (4.10), we have

sup
x≥1

|Fn(αnxβn)− Φ1(x)| < (c̃5 + c̃7)β2
n.

Secondly, consider the situation of cn ≤ x < 1. By Lemma 2.1, we obtain

−nΨn(x) +
1
x

= −n

(
1√
2π

(log(αnxβn))−1 exp(−(log(αnxβn))2

2
)− γ(αnxβn)

)
+

1
x

= −n

(
1√
2π

(log(αnxβn))−1 exp(−(log(αnxβn))2

2
)

− 1√
2π

(log(αnxβn))−3qn(αnxβn) exp(−(log(αnxβn))2

2
)

)
+

1
x

=
1
x

(
1 + β2

n log x)−1(−(1− (log αn)−2qn(αnxβn)(1 + β2
n log x)−2)

× exp(−1
2
β2

n log2 x) + 1 + β2
n log x

)

=
1
x

(1 + β2
n log x)−1Qn(x),

where 0 < qn(x) < 1 and

Qn(x) = −
(
1− β2

nqn(αnxβn)(1 + β2
n log x)−2

)
exp(−1

2
β2

n log2 x) + 1 + β2
n log x.

Since e−x > 1− x, as x > 0, we have

Qn(x) < −(1− β2
nqn(αnxβn)(1 + β2

n log x)−2)(1− 1
2
β2

n log2 x) + 1 + β2
n log x

< β2
n((1 + β2

n log x)−2 +
1
2

log2 x).

But

Qn(x) > β2
nqn(αnxβn)(1 + β2

n log x)−2 + β2
n log x

> β2
n log x.

Hence, we obtain

|Qn(x)| < β2
n((1 + β2

n log x)−2 +
1
2

log2 x + | log x|)

< β2
n

(
(1− log(2 log log αn)

log2 αn

)−2 +
1
2

log2 x + | log x|
)

< β2
n(c̃8 +

1
2

log2 x + | log x|)

for n > n0, where cn ≤ x < 1. Therefore,

| − nΨn(x) +
1
x
| < β2

n(c̃8 +
1
2

log2 x + | log x|)x−1(1 + β2
n log x)−1
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< β2
n(c̃8 +

1
2

log2 cn + | log cn|)c−1
n (1 + β2

n log cn)−1

< c̃9

for n ≥ n0. Thus, there exists a positive number θ satisfying 0 < θ < 1 such that

Φ1(x)|An(x)− 1| < Φ1(x) exp(θ(−nΨn(x) +
1
x

))| − nΨn(x) +
1
x
|

< exp(c̃9)β2
n sup

cn≤x<1
|(c̃8 +

1
2

log2 x + | log x|)x−1|(1 + β2
n log cn)−1

< c̃10β
2
n. (4.11)

By (4.9) and (4.11), the proof of (4.6) is complete.

Thirdly, consider the circumstance of 0 < x < cn. In this case

Φ1(x) < Φ1(cn) = β2
n,

we have

sup
0<x<cn

|Fn(αnxβn)− Φ1(x)| < Fn(αncβn
n ) + Φ1(cn)

< sup
cn<x<1

|Fn(αnxβn)− Φ1(x)|+ 2Φ1(cn)

< (c̃5 + c̃10)β2
n + β2

n

< c̃11β
2
n.

The proof of Theorem 3.1 is finished.
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