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Critical Behavior of Heisenberg Chains Coupled to Phonons

Rainer W. Kühne
Vorm Holz 4, 42119 Wuppertal, Germany

We present a quantum Monte Carlo study for the
isotropic antiferromagnetic Heisenberg chain coupled to Ein-
stein phonons. By investigating the behavior of the corre-
lation length ξ we find the critical exponent ν to depend
on both the phonon frequency Ω and the spin-phonon cou-
pling constant g. The relation is ξ/a = (1.215 ± 0.020)(1 +
g2J/Ω)(T/J)−ν , where ν = 1 − 0.5|g|3/2J/Ω. Hence, these
systems change the universality class continuously with the
spin-phonon coupling.

PACS numbers: 63.20.Kr, 75.10.Jm, 75.40.Mg, 75.50.Ee

The critical behavior of Ising models and isotropic
Heisenberg systems is well-understood. An important
question to address is whether the introduction of further
degrees of freedom such as disorder and phonons changes
the universality class of the transition. The situation for
distorted spin systems has been discussed controversially
in the literature, that for spin-phonon systems will be
examined in this study.

Some evidence has been presented for different critical
behavior of distorted and pure spin systems. A numer-
ical transfer matrix study for quenched random bonds
in the two-dimensional ferromagnetic Ising model sug-
gested the critical exponent ν to change with the addi-
tion of quenched random defects, ν > 1 (Ref. 1), where
for the pure two-dimensional Ising model it is ν = 1.
A Monte Carlo study of the two-dimensional randomly
site diluted Ising model argued for concentration depen-
dent critical indices, especially ν > 1 (Refs. 2 and 3
and discussion4–6). A combination of the grand ensem-
ble approach and phenomenological renormalization for
the two-dimensional spin diluted Ising model suggested
a continuous variation of the critical exponents γ and ν
with the density of magnetic impurities, respecting weak
universality, i. e. η and γ/ν remain fixed7.

By contrast, high-temperature series expansions of the
two-dimensional random-bond Ising ferromagnet found
γ to increase steadily with disorder only if the power-
law χ ∝ t−γ (where χ is the magnetic susceptibility
and t ≡ (T − Tc)/Tc) is assumed. If logarithmic correc-
tions of the form χ ∝ t−γ | ln t|γ/2 are taken into account
the universality class is not changed8. Furthermore,
Monte-Carlo simulations of the two-dimensional Ising
model with randomly distributed ferromagnetic bonds
have shown only the critical exponent βd of the defect
magnetization to change continuously with the strength
of the defect coupling. However, the critical exponent
ν of the random Ising model has been reported to not
depend on dilution, i. e. ν = 1 (Ref. 9).

Let us turn to antiferromagnetic Heisenberg chains.
A complete and exact diagonalization of the pure sys-
tem has shown the critical exponent ν = 1.0 (Ref.
10). Strong spin-phonon coupling is known to generate
dimerization11–17, thus altering the properties of the pure
spin-chain. This prompted us to examine whether chains
with nonzero spin-phonon coupling enjoy the same criti-
cal behavior.

We perform a quantum Monte Carlo simulation of
the spin-1/2 isotropic antiferromagnetic Heisenberg chain
coupled to Einstein phonons,

H =
J

2

N
∑

l=1

(~σl~σl+1 − 1)(1 + g(b†l + bl)) + Ω

N
∑

l=1

b†l bl, (1)

by using the extended loop algorithm described in
Ref. 17. We choose the chain length N = 64 and the
Trotter number M = 80, because for these values finite-
size effects are negligible for temperatures T ≥ 0.2J . For
all our runs we find a truncation of 50 phonons per site
to be sufficient for the temperature range investigated,
0.2J ≤ T ≤ J , the probability for more than 50 phonons
per site is less than 10−6.
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FIG. 1. The logarithm of the correlation function
< Sz

i Sz
j > (−1)i−j versus |i − j|. Black symbols show the

region where the correlation function decays exponentially.
The correlation length ξ was determined by using the data
points of this region only.

We examine the correlation length ξ of the correlation
function G(r) =< Sz

i Sz
j > (−1)i−j , where Sz

i is the z-
component of the ith spin. In one-dimensional systems
this function decays according to G(r) ∝ exp (−r/ξ) for
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r ≫ ξ (Ref. 18), where r = a|i − j| and a denotes the
lattice constant. Because of statistical fluctuations quan-
tum Monte Carlo simulations allow the examination of
this decay only in a finite region of r. A typical result
is shown in Fig. 1. The correlation lengths of all the
systems we investigated are a < ξ < 7a. Therefore the
chain length N is (with few exceptions) at least an order
of magnitude larger than ξ. Hence, finite-size effects are
unlikely to alter our results significantly. Furthermore,
a simulation with N = 64 and M = 80 for the pure
Heisenberg chain in the temperature range 0.2J ≤ T ≤ J
yielded ξ within an inaccuracy of ≤ 3%, when compared
with the exact data of Ref. 19. This value sets an up-
per limit on the effects of finite size and finite Trotter
number.
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FIG. 2. The correlation length ξ in units of the lattice
constant a as a function of the inverse temperature. The solid
line is the linear fit. The existence of the offset disproves the
suggested proportionality ξ ∝ T−1.

If spin-phonon chains and pure spin chains enjoy the
same critical behavior we would expect ξ ∝ T−ν with
ν = 1. In Fig. 2 we present ξ as a function of the inverse
temperature. The appearance of the offset refutes the
suggested proportionality. Hence, spin-phonon chains do
not enjoy the same critical behavior as pure spin chains.

In the following we will examine the dependence of the
correlation length ξ (in units of the lattice constant a) on
the phonon frequency Ω and the spin-phonon coupling
constant g. The formula we would like to determine is
ξ/a = f(g, Ω)(T/J)−ν(g,Ω).

We first determine the best fit values of ν for the pro-
portionality ξ ∝ T−ν . Typical curves are shown in Fig. 3.
Afterwards we examine the dependence ν = ν(g, Ω). The
proportionality 1− ν ∝ 1/Ω is shown in Fig. 4a, the pro-
portionality 1 − ν ∝ g3/2 is shown in Fig. 4b. By using
various sets for g and Ω we find 1 − ν = 0.5|g|3/2J/Ω
(Fig. 5).

Naturally, this relation is valid only for systems with
not too large values of |g(Ω)|. For larger values of g the

appearance of dimerization destroys the region of expo-
nential decay and therefore does not allow the definition
of the correlation length. This is why we were not able
to identify critical exponents ν < 0.7 for high values of
|g|3/2J/Ω.
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FIG. 3. The correlation length ξ in units of the lattice
constant a as a function of the best fit for the critical exponent
ν. The solid line is the linear fit.
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FIG. 4. The deviation of the critical exponent ν from the
Heisenberg value 1 in dependence of (a) 1/Ω and (b) g3/2.
The solid lines denote the relation 1 − ν = 0.5g3/2J/Ω.

We proceed by plotting ξ as a function of

(T/J)−1+0.5|g|3/2J/Ω. Typical graphs are shown in Fig. 6.
The slope parameter gives the value for f(g, Ω).

The dependence of f on Ω is shown in Figs. 7a and
c, that on g in Figs. 7b and d. We find f(g, Ω) = c(1 +
g2J/Ω). The proportionality constant is c = 1.215±0.020
(Fig. 8).

To test our Eq. (2) we present ξ for fixed temperature
T = J and various choices of g and Ω in Fig. 9. For T = J
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this equation simplifies to ξ/a = f(g, Ω) ≡ c(1 + g2J/Ω).
We prove Eq. (2) to be correct where our best fit yields
c = 1.212. This is in agreement with the exact result for
the pure Heisenberg chain, cH(T = J) = 1.203 (Ref. 19).
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FIG. 5. The deviation of the critical exponent ν from the
Heisenberg value 1 as a function of |g|3/2J/Ω.
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FIG. 6. The correlation length ξ in units of the lattice con-
stant a as a function of (T/J)−ν , where ν = 1 − 0.5g3/2J/Ω.
The solid line is the linear fit.

The correlation lengths of all our runs can be fit-
ted by the proportionality ξ ∝ (T/J)−ν where ν =
1 − 0.5|g|3/2J/Ω (typical graphs are shown in Fig. 6).
Furthermore, for T = J the correlation lengths of all our
runs satisfy ξ/a = c(1+g2J/Ω) where the proportionality
constant c is in very good agreement with the value for
the pure Heisenberg chain (Fig. 9). Hence, the exponent
ν we examined is not an effective exponent. Its variation
with g and Ω is real and not a spurious artifact from a
non-power-law behavior of the correlation length.
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FIG. 7. The factor f(g,Ω) as (a) a function of Ω, (b) a
function of g, (c) a function of Ω, and (d) a function of g. The
solid lines are linear fits. Ideally, they should be identical.
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FIG. 8. The factor f(g, Ω) as a function of both g and Ω.
The solid line is the linear fit.

In summary, we found evidence for different critical be-
havior of the spin-1/2 isotropic antiferromagnetic Heisen-
berg chain coupled to Einstein phonons with respect to
the pure system. The dependence of the correlation
length ξ on the phonon frequency Ω and the spin-phonon
coupling constant g is

ξ

a
= (1.215 ± 0.020)

(

1 +
g2J

Ω

) (

T

J

)−1+0.5|g|3/2J/Ω

,

(2)

where a is the lattice constant, T is the temperature,
and J is the spin-spin coupling constant. The value
c = 1.215 ± 0.020 is in accordance with the value found
for the pure Heisenberg chain, cH = 1.18 ± 0.03, in the
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temperature range 0.2J ≤ T ≤ J (Ref. 19). In this tem-
perature range cH varies slightly (by 5%; possibly due to
logarithmic corrections). From our data sets (cf. Fig. 6)
we can infer an upper limit for the variation of c in this
temperature range to be 10%.

This result may be of importance for the understanding
of materials like Sr2CuO3 and α′-NaV2O5 whose (high-
temperature) dynamics can be described by a nearest-
neighbor spin-1/2 isotropic antiferromagnetic Heisenberg
chain20,21.
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1 M. A. Novotny, Phys. Rev. Lett. 70, 109 (1993).
2 J.-K. Kim and A. Patrascioiu, Phys. Rev. Lett. 72, 2785
(1994).

3 J.-K. Kim and A. Patrascioiu, Phys. Rev. B 49, 15764
(1994).

4 W. Selke, Phys. Rev. Lett. 73, 3487 (1994).
5 K. Ziegler, Phys. Rev. Lett. 73, 3488 (1994).
6 J.-K. Kim and A. Patrascioiu, Phys. Rev. Lett. 73, 3489
(1994).
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