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Abstract: Motivated by Finner et al. (2008), the asymptotic behavior of the
probability density function (pdf) and the cumulative distribution function (cdf)
of the generalized exponential and Maxwell distributions are studied. Specially,
we consider the asymptotic behavior of the ratio of the pdfs (cdfs) of the gen-
eralized exponential and Student’s ¢-distributions (likewise for the Maxwell and
Student’s ¢-distributions) as the degrees of freedom parameter approach infinity
in an appropriate way. As by products, Mills’ ratios for the generalized exponen-
tial and Maxwell distributions are gained. Moreover, we illustrate some examples
to indicate the application of our results in extreme value theory.
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1 Introduction

The generalized exponential and Maxwell distributions are quickly becoming preferred
probability distributions in economics and duration analysis due to both models of subfami-
lies of the general gamma are simpler and more flexible than the general gamma distribution,
see Morteza and Alireza (2010) for details.

Generalized exponential distribution (GE for short) was introduced by Gupta and Kundu
(1999). The generalized exponential distribution can be found important applications in
survival analysis, lifetime analysis of product, reliability engineering and geophysical signal
time-frequency analysis. It is also observed that the generalized exponential distribution is
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quite flexible and can be used quite effectively in analyzing positive lifetime data in place of
well-known gamma, Weibull or log-normal distributions, for details see Gupta and Kundu
(2001) and Gupta and Kundu (2007). At the same time, the GE distribution has a nice
physical interpretation also. Suppose, there are n-components in a parallel system and the
lifetime distribution of each component is independent and identically distributed. If the
lifetime distribution of each component is GE, then the lifetime distribution of the system
is also GE.

The probability density function (pdf) of the generalized exponential random variable is
given by
Ira(T) = aX(l — e M) e 1 >0, (1.1)

where a, A > 0. Let G, 4(-) denote the corresponding cumulative distribution function
(cdf). When the parameter o = 1, it coincides with the exponential distribution (lifetime
distribution).

The pdf of the Maxwell random variable is given by

2 2
me(z) = zx_g exp(—x—), x>0, (1.2)
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where ¢ > 0. Let M,(-) denote the corresponding cumulative distribution function (cdf).
The Maxwell distribution have a variety of areas that range from chemistry to physics, par-
ticularly in statistical mechanics. It has also attracted interesting applications in molecular
speeds, ideal gases close to thermodynamic equilibrium, negligible quantum effects, and non-
relativistic speeds, describing the distribution of the momenta and energy of the molecules
and studying gases.

Finner et al. (2008) investigated the tail behavior of the Student’s ¢-distribution with
respect to the normal distribution when the degrees of freedom goes to infinity in an appro-
priate way. They established some interesting results consisting of the asymptotic behavior
of the ratio of the densities, a large deviation theorem and asymptotic Mills’ ratio of the
Student’s ¢-distribution. The study regarding tail property of distribution can be found in
the recent references as follows. Peng et al. (2009) investigated tail property of the general
error distribution and obtained associated asymptotic Mills-type ratio. Peng et al. (2009)
discussed asymptotic ratios of the cdfs (pdfs) of the standard Laplace and the Student’s
t-distributions and standard logistic distributions. Lin and Peng (2010) considered the tail
behavior of the short-tailed symmetric distribution and obtained the corresponding limiting
distribution of maxima with i.i.d. random variable. Liao et al. (2013) studied tail behaviors,
subexponentiality and extreme value distribution of logarithmic skew-normal distribution.
Lin and Jiang (2012) considered a generalization of the short-tailed symmetric distribution
and derived the corresponding asymptotic tail behavior, Mills’ ratio and asymptotic distri-
bution of the partial maximum.

Mills (1926) gave the following inequality and Mills’ ratio of note for the normal distri-
bution ®(x) with the pdf ¢(z) :

e 1+ 272) o(r) < 1 — ®(x) < a7 'é(w), for z > 0, (1.3)



and
1—-®(x) 1

¢(z) z’
To derive the main results, we need the following one result.

TheoremA (Corollary 1.1, Finner et al. (2008)). If lim, .o, 22/v = 8 € [0,00) and
lim,_, z, = 00, we have

as r — 0. (1.4)

F,(—z,) 1
— ~ — (V= 00), 1.5
e o ( ) (1.5)
where f,(x) and F,(z) denote the pdf and the cdf of the Student’s t-distribution with degree
of freedom v, respectively.

The main objective of this article is to extend the above result for the generalized ex-
ponential and Maxwell distributions. The rest of the paper is organized as follows. In
Section 2, the tail of the generalized exponential distribution compared with the Student’s
t-distribution are described and a Mills’ ratio is obtained. The similarity for the Maxwell
distribution is discussed in Section 3. Note that the respective tail behaviors controlled by
the scale parameters A in (1.1) and o in (1.2). For the Student’s ¢-distribution, the scale is
the degrees of freedom parameter v controlling its tail. Therefore, it is of interest to know
how the tails of the three distributions contrast between them.

2 Tail behavior of the generalized exponential distri-
bution

With the preceding notation, for fixed v, A, and «, it is easy to check that
fu() 1—Fy(x)

D00, —v 2.1
P 1= Chale) (2.1)

as r — OQ.

Here, we describe the tail of the generalized exponential distribution compared to the
Student’s t-distribution when the degree of freedom of the latter approaches infinity in an
appropriate way.

Theorem 2.1. For x > 0, suppose v = v(z), A = A(z) such that

A= f’ lim (%4 - 4logx) = €[0,00) (2.2)
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holds. For fixed o > 0, we have
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Proof. Observing that

v+1

fu()
Ira(T)

T

_F(%) 1 _2 o L —exp(=\2))" @ Vexp(\x
_ P(%)M(H ) (1 exp(—Aa) p(\)

(% (0%

and since .
['(z) = V2ra® 2 exp(—z + 0(x)), as x > 0,

where 0(z) = 13-, 0 < ¢ < 1, we have

Put

-

v+

1 2\ 7%
kao(z) = X (1 + %) (1-— eXp(—)\x))’(o"l) exp(Az).

Then, for sufficiently large v, we have

log(kaw(z)) = —log A+ Az — vt

L og (1 + %2) (@ 1) log(1 — exp(—Az))

1 2
:—log)\+)\$—%log (1—1—%) +o(1)

v+1 [2? x? 20
= —log A+ Az — —— —4+0|(—=
OBAT AT 2 (v 2v2+ (v3
2 2? v+ 12 x? 20
:10g2+5—?+(4v ?—logx>—%+0(§)

=log2+ g + o(1),

and by (2.6) we complete the proof of Theorem 2.1.

The following result is the corresponding large deviation theorem.

Theorem 2.2. Under the condition of Theorem 2.1, we have

lim 1= F() _ 1 ex (é>
o 1= Gra(?)  v2ra P\4)-

Proof. We present a result for the Student’s ¢ distribution in Soms (1983, 1984):

(o) () < e < ()

for all z > 0 and v > 0. Utilizing (2.2), we have

. gx a(x) iy
lim — 22\ _ T o,
TG a@ 2@
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(2.4)

(2.5)

(2.8)



where

with

lim r,(z) = 1.
T—>00

Note that
1_Fv(x) . 1_Fv(x) fv(x) g)\,&(m>

I G)\,a<x> a fv(x) g)x,a(x) 1 - GA,a(x)’
which combining with (2.8) and (2.9), we have

(1+$_2> <1_ v 1 > ra() folz) _ 1—Fv(x)) - <1+$_2) ra(z) fo(2) (2.11)

v v+ 222 2 gralz) 1 —Ghalz v 2 gx\,a($>7

then by using Theorem 2.1 and (2.2), the conclusion can be deduced. O

(2.10)

Corollary 2.1. Under the condition of Theorem 2.1, we have

L=Gralw) 2
Ira(zv) xv( — 00). (2.12)

Proof. Noting that (2.2) implies lim, .., #?/v = 0, the result follows directly Theorem A,
Theorem 2.1 and Theorem 2.2. O

Remark 2.1. The Mills ratios such as (2.12), (1.4), (1.5) are extremely important in con-
sidering some behavior of economic and financial data. Further, the hazard rate (failure
rate) is equal to the reciprocal of Mills ratio.

In the following part, we will consider the asymptotic behavior of the ratio of densities of
Maxwell distribution and Students’ t distribution as the degrees of freedom tends to infinity
in some way. Note that for the fixed o, v, easily check that

fo(zx) ~ 1 — Fy(z) _ F,(—x)
me(@) 0 T=My(z)  M,(—x)

— 00 (2.13)

as r — oQ.

3 Tail behavior of the Maxwell distribution

Theorem 3.1. Let 0 = o(x), v = v(x) such that

v \'? vk
o= ( ) ., lim (—” — 810ng> = (€ [0,00), (3.1)

v+1 v
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then for x > 0, we have




Proof. Note that
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I3 var 2 32
and .
VGO I N o B A Ui R (3.3)
me(z)  T(%) 2022 v P\ 202 ) '
Let

then for sufficiently large v, we obtain

2 v+1 x?
log(hg., =31 — 21 _— 1 14+ —
08l () = 3logo ~ 2loga + 3 — “F og (14 %)

2 1/ 22 4 6
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v v

2 +1 4v 2v 20 v?
= § +o(1),
which combining with (3.2) finish the proof of theorem 3.1. O

For the asymptotic behavior of Students’ t-distribution and Maxwell distribution, we
have the following large deviation theorem.

Theorem 3.2. Under the condition of theorem 3.1, we have

m AZZ((:Z>) = 2(172 xp (g) ‘ (3:4)

Proof. By integration by parts, we can obtain the following inequalities which is used for
the proof of the theorem, i.e.

a% (1+ g)_l < % < a% (1+ g) . (3.5)

Since the similar deduction of above equalities can be found in Lin and Peng (2010), we omit
that process. By combining both chains of inequalities (2.8) and (3.5), it follows

IS IENEOE S =
< % (1 + ?) <1 + Z—j) ni((?)' (3.6)




By utilizing Theorem 3.1 and (3.1), we have

F(— |
s MU((_Z)) < oop e (g) . (3.7)

Analogously, for lower bound, we have
e Bo(=x) ] B
AN S =
111151_1>10101f M, (=) = 207 exp ( ) . (3.8)
Combining with (3.7) and (3.8), the proof of the result is completed. O]

Corollary 3.1. Under the condition of Theorem 3.1, we have

—MU(_x) ~ 0—2 vV — 00
my(x) :Ev( = 00).

Proof. Notice that (3.1) implies lim, .o, #?/v = 0, the result follows directly Theorem A,
Theorem 3.1 and Theorem 3.2. [l

Remark 3.1. For ¢ > 0, an application of Corollary 3.1 is to show that M, € D(A), i.e.,
there exist normalizing constants a,, > 0 and b, € R such that M,(a,z +b,) — D(A), as
n — oo, where D(A) denotes the domain of attraction of D(A) = exp{—e "}.

(d/da)my(z) 1 (2_ x2)7

me(z)  w o?

Since

we have by Corollary 3.1 that
M, (—x) (d/dx)m,(z)

ma(@)  me@)

as x — 0o, thus, by Proposition 1.18 in Resnick (1987) that M, € D(A).

The following corollary will give the representation of M, (—z) by application of Corollary
3.1.

Corollary 3.2. Under the condition of Corollary 3.1, we have
My(=a) = cloyexp{ - [0/ 10 ot
1
for sufficiently large x, where
1 /2 ( 1 )
c(x) > —y\/—exp| —=— |, = — o0,

g



Proof. According to Corollary 3.1 and some simple calculation, the conclusion can be de-
duced. O]

Remark 3.2. The representation of M,(—x) given by Corollary 3.2 has some application-
s. A direct application of Corollary 3.2 is to show M, € D(A) for ¢ > 0, see Corollary
1.7 of Resnick (1987). We may also consider the uniform convergence of the distribution
of normalized maxima (cf. Resnick, 1987, Sec. 2.4.2) and large deviation properties (cf.
Resnick, 1987, Proposition 2.10) as the auxiliary function f(¢) plays an important role in
these studies. Besides more significant application of Corollary 3.2 is to obtain the optimal

normalized constants (3, satisfying
To (B _
235, P g2) ="

C1/logn < sup |M,(a,z + b,) — A(z)| < Cy/logn,

and a,, = f(5,) such that

for n > ng, here C; and Cy are constants depending on 0. As to the rate of convergence for
the Maxwell distribution, it is difficult and is not in the scope of the present paper.
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