Compositeness Tests for Specific Classes of $k \cdot 3^{n}+2$

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

September 13, 2014

Abstract

Conjectured polynomial time compositeness tests for specific classes of numbers of the form $k \cdot 3^{n}+2$ are introduced .

Keywords: Compositeness test , Polynomial time, Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In 1969 Hans Riesel provided polynomial time primality test for numbers of the form $k \cdot 2^{n}-1$ with k odd, $k<2^{n}$ and $n>2$, see Theorem 5 in [1]. In this note I present polynomial time compositeness tests for specific classes of numbers of the form $k \cdot 3^{n}+2$.

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=k \cdot 3^{n}+2$ such that $n>2, k \equiv 1,3(\bmod 8)$ and $k<3^{n}$.
Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{3}(6)(\bmod N)$
Conjecture 2.2. Let $N=k \cdot 3^{n}+2$ such that $n>2, k \equiv 5,7(\bmod 8)$ and $k<3^{n}$.
Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{1}(6)(\bmod N)$

References

[1] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $k \cdot 2^{n}-1$ ", Mathematics of Computation (AmericanMathematical Society), 23 (108): 869-875 .

