Conjectured Compositeness Tests for Specific Classes of $b^n - b + 1$ and $b^n + b - 1$

Predrag Terzić

Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

September 10, 2014

Abstract: Compositeness criteria for specific classes of numbers of the form $b^n - b + 1$ and $b^n + b - 1$ are introduced.

Keywords: Compositeness test, Polynomial time, Prime numbers.

AMS Classification: 11A51.

1 Introduction

In 2008 Ray Melham provided unconditional, probabilistic, lucasian type primality test for generalized Mersenne numbers [1]. In this note I present polynomial time compositeness tests for specific classes of numbers of the form $b^n - b + 1$ and $b^n + b - 1$.

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=b^n-b+1$ such that n>3, $b\equiv 0,2\pmod 8$.

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{b/2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$

Conjecture 2.2. Let $N=b^n-b+1$ such that n>3 , $b\equiv 4,6\pmod 8$.

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{b/2}(6)$, thus If N is prime then $S_{n-1} \equiv -P_{(b-2)/2}(6) \pmod{N}$

Conjecture 2.3. Let $N=b^n+b-1$ such that n>3 , $b\equiv 0,2\pmod 8$.

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{b/2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{(b-2)/2}(6) \pmod{N}$

Conjecture 2.4. Let
$$N=b^n+b-1$$
 such that $n>3$, $b\equiv 4,6\pmod 8$.

Let
$$S_i=P_b(S_{i-1})$$
 with $S_0=P_{b/2}(6)$, thus If N is prime then $S_{n-1}\equiv -P_{b/2}(6)\pmod N$

References

[1] R. S. Melham, "Probable prime tests for generalized Mersenne numbers,", *Bol. Soc. Mat. Mexicana*, 14 (2008), 7-14.