When $\pi(n)$ does not divide n

Germán Andrés Paz*

January 26, 2015

Abstract

Let $\pi(n)$ denote the prime-counting function and let

$$f(n) = \left| \left\lfloor \log n - \left\lfloor \log n \right\rfloor - 0.1 \right\rfloor \right| \left\lfloor \frac{\left\lfloor n / \left\lfloor \log n - 1 \right\rfloor \right\rfloor \left\lfloor \log n - 1 \right\rfloor}{n} \right\rfloor.$$

In this paper we prove that if n is an integer ≥ 60184 and f(n) = 0, then $\pi(n)$ does not divide n. We also show that if $n \geq 60184$ and $\pi(n)$ divides n, then f(n) = 1. In addition, we prove that if $n \geq 60184$ and $n/\pi(n)$ is an integer, then n is a multiple of $\lfloor \log n - 1 \rfloor$ located in the interval $[e^{\lfloor \log n - 1 \rfloor + 1}, e^{\lfloor \log n - 1 \rfloor + 1.1}]$. This allows us to show that if c is any fixed integer ≥ 12 , then in the interval $[e^c, e^{c+0.1}]$ there is always an integer n such that $\pi(n)$ divides n.

Let S denote the sequence of integers generated by the function $d(n) = n/\pi(n)$ (where $n \in \mathbb{Z}$ and n > 1) and let S_k denote the kth term of sequence S. Here we ask the question whether there are infinitely many positive integers k such that $S_k = S_{k+1}$.

Keywords: bounds on the prime-counting function, explicit formulas for the prime-counting function, intervals, prime numbers, sequences

2010 Mathematics Subject Classification: 00-XX · 00A05 · 11-XX · 11A41 · 11Bxx

^{*(2000)} Rosario, Santa Fe, Argentina; E-mail: germanpaz_ar@hotmail.com

0 Notation

Throughout this paper the number n is always a positive integer. Moreover, we use the following notation:

- $|\cdot|$ (absolute value)
- $\left[\cdot\right]$ (ceiling function)
- | (divides)
- \neq (does not divide)
- $\lfloor \cdot \rfloor$ (floor function)
- $\operatorname{frac}(\cdot)$ (fractional part)
- log (natural logarithm)

1 Introduction

Determining how prime numbers are distributed among natural numbers is one of the most difficult mathematical problems. This explains why the prime-counting function $\pi(n)$ (which counts the number of primes less than or equal to a given number n) has been one of the main objects of study in Mathematics for centuries.

In [2] Gaitanas obtains an explicit formula for $\pi(n)$ that holds infinitely often. His proof is based on the fact that the function $d(n) = n/\pi(n)$ takes on every integer value greater than 1 (as proved by Golomb [3]) and on the fact that $x/(\log x - 0.5) < \pi(x) < x/(\log x - 1.5)$ for $x \ge 67$ (as shown by Rosser and Schoenfeld [4]). In this paper we find alternative expressions that are valid for infinitely many positive integers n, and we also prove, among other results, that if $n \ge 60184$ and

$$\left| \left\lfloor \log n - \left\lfloor \log n \right\rfloor - 0.1 \right\rfloor \right| \left\lfloor \frac{\left\lfloor n / \left\lfloor \log n - 1 \right\rfloor \right\rfloor \left\lfloor \log n - 1 \right\rfloor}{n} \right\rfloor$$

equals 0, then $\pi(n)$ does not divide n.

We will place emphasis on the following three theorems, which were proved by Golomb, Dusart, and Gaitanas respectively: **Theorem 1.1** [3]. The function $d(n) = n/\pi(n)$ takes on every integer value greater than 1.

Theorem 1.2 [1]. If n is an integer ≥ 60184 , then

$$\frac{n}{\log n - 1} < \pi(n) < \frac{n}{\log n - 1.1}.$$

Remark 1.3. Dusart's paper states that for $x \ge 60184$ we have $x/(\log x - 1) \le \pi(x) \le x/(\log x - 1.1)$, but since $\log n$ is always irrational when n is an integer > 1, we can state his theorem the way we did.

Theorem 1.4 [2]. The formula

$$\pi(n) = \frac{n}{\lfloor \log n - 0.5 \rfloor}$$

is valid for infinitely many positive integers n.

2 Main results

We are now ready to prove our main results:

Theorem 2.1. The formula

$$\pi(n) = \frac{n}{\lfloor \log n - 1 \rfloor}$$

holds for infinitely many positive integers n.

Proof. According to Theorem 1.2, for $n \ge 60184$ we have

$$\frac{n}{\log n - 1} < \pi(n) < \frac{n}{\log n - 1.1} \Rightarrow \frac{\log n - 1.1}{n} < \frac{1}{\pi(n)} < \frac{\log n - 1}{n}.$$

If we multiply by n, we get

$$\log n - 1.1 < \frac{n}{\pi(n)} < \log n - 1.$$
 (1)

Since $\log n - 1.1$ and $\log n - 1$ are both irrational (for n > 1), inequality (1) implies that when $n/\pi(n)$ is an integer we must have

$$\frac{n}{\pi(n)} = \lfloor \log n - 1 \rfloor = \lfloor \log n - 1 . 1 \rfloor + 1 = \lceil \log n - 1 . 1 \rceil = \lceil \log n - 1 \rceil - 1.$$
(2)

Taking Theorem 1.2 and equality (2) into account, we can say that for every $n \ge 60184$ when $n/\pi(n)$ is an integer we must have

$$\frac{n}{\pi(n)} = \lfloor \log n - 1 \rfloor \Rightarrow \pi(n) = \frac{n}{\lfloor \log n - 1 \rfloor}.$$

Since Theorem 1.1 implies that $n/\pi(n)$ is an integer infinitely often, it follows that there are infinitely many positive integers n such that $\pi(n) = n/\lfloor \log n - 1 \rfloor$.

In fact, the following theorem follows from Theorems 1.1, from Gaitana's proof of Theorem 1.4, and from the proof of Theorem 2.1:

Theorem 2.2. For every $n \ge 60184$ when $n/\pi(n)$ is an integer we must have

$$\frac{n}{\pi(n)} = \lceil \log n - 1.5 \rceil = \lfloor \log n - 0.5 \rfloor = \lfloor \log n - 1 \rfloor =$$

= $\lfloor \log n - 1.1 \rfloor + 1 = \lceil \log n - 1.1 \rceil = \lceil \log n - 1 \rceil - 1.$ (3)

In other words, for $n \ge 60184$ when $n/\pi(n)$ is an integer we must have

$$\pi(n) = \frac{n}{\lceil \log n - 1.5 \rceil} = \frac{n}{\lfloor \log n - 0.5 \rfloor} = \frac{n}{\lfloor \log n - 1 \rfloor} = \frac{n}{\lfloor \log n - 1 \rfloor} = \frac{n}{\lfloor \log n - 1.1 \rfloor + 1} = \frac{n}{\lceil \log n - 1.1 \rceil} = \frac{n}{\lceil \log n - 1 \rceil - 1}.$$

Theorem 2.3. Let *n* be an integer ≥ 60184 . If frac(log *n*) = log $n - \lfloor \log n \rfloor > 0.1$, then $\pi(n) \nmid n$ (that is to say, $n/\pi(n)$ is not an integer).

Proof. According to Theorem 2.2, if $n \ge 60184$ and $n/\pi(n)$ is an integer, then

$$\frac{n}{\pi(n)} = \lfloor \log n - 1 \rfloor = \lceil \log n - 1.1 \rceil.$$

In other words, for $n \ge 60184$ when $n/\pi(n)$ is an integer we have

$$\lfloor \log n - 1 \rfloor = \lceil \log n - 1.1 \rceil$$
$$\lfloor \log n - 1 \rfloor = \lceil \log n - 1 - 0.1 \rceil$$
$$\operatorname{frac}(\log n - 1) \le 0.1$$
$$\log n - 1 - \lfloor \log n - 1 \rfloor \le 0.1$$

$$\log n - \lfloor \log n - 1 \rfloor \le 1.1$$
$$\operatorname{frac}(\log n) \le 0.1$$
$$\log n - \lfloor \log n \rfloor \le 0.1.$$

Suppose that P is the statement $n/\pi(n)$ is an integer' and Q is the statement $\log n - \lfloor \log n \rfloor \leq 0.1$ '. According to propositional logic, the fact that $P \to Q$ implies that $\neg Q \to \neg P$.

Similar theorems can be proved by using Theorem 2.2 and equality (3). Remark 2.4. We can also say that if $n \ge 60184$ and

$$n > e^{0.1 + \lfloor \log n \rfloor},$$

then $\pi(n) \nmid n$.

Remark 2.5. Because $\log n$ is irrational for n > 1, another way of stating Theorem 2.3 is by saying that if $n \ge 60184$ and the first digit to the right of the decimal point of $\log n$ is 1, 2, 3, 4, 5, 6, 7, 8, or 9, then $\pi(n) \nmid n$. Example:

$$\log 10^{31} = 71.38...$$

The first digit after the decimal point of $\log 10^{31}$ (in red) is 3. This implies that $\pi(10^{31})$ does not divide 10^{31} . We can also say that if $n \ge 60184$ and $\pi(n)$ divides n, then the first digit after the decimal point of $\log n$ can only be 0.

Now, if y is a positive noninteger, then the first digit after the decimal point of y is equal to $\lfloor 10 \operatorname{frac}(y) \rfloor = \lfloor 10y - 10 \lfloor y \rfloor \rfloor$. So, we can say that if $n \ge 60184$ and $\lfloor 10 \log n - 10 \lfloor \log n \rfloor \rfloor \ne 0$, then $\pi(n) \nmid n$. On the other hand, if $n \ge 60184$ and $\pi(n)$ divides n, then $\lfloor 10 \log n - 10 \lfloor \log n \rfloor \rfloor = 0$.

The following theorem follows from Theorem 2.3:

Theorem 2.6. Let *e* be the base of the natural logarithm. If *a* is any integer ≥ 11 and *n* is any integer contained in the interval $[e^{a+0.1}, e^{a+1}]$, then $\pi(n) \nmid n$. (The number e^r is irrational when *r* is a rational number $\neq 0$.)

Example 2.7. Take a = 18. If n is any integer in the interval $[e^{18.1}, e^{19}]$, then $\pi(n) \nmid n$.

Corollary 2.8. If a is any positive integer > 1, then $\pi(\lfloor e^a \rfloor) \nmid \lfloor e^a \rfloor$.

Proof. For $a \ge 12$ the proof follows from Theorem 2.6. On the other hand, $\lfloor e^a \rfloor / \pi(\lfloor e^a \rfloor)$ is not an integer whenever $2 \le a \le 11$, as shown in the following table:

a	$\lfloor e^a \rfloor / \pi(\lfloor e^a \rfloor)$
1	2
2	1.75
3	2.5
4	3.37
5	4.35
6	5.10
7	5.98
8	6.94
9	7.95
10	8.93
11	9.89

In other words, if $a \in \mathbb{Z}^+$, then $\pi(\lfloor e^a \rfloor) \mid \lfloor e^a \rfloor$ only when a = 1.

Theorem 2.9. Let *n* be an integer ≥ 60184 and let

$$f(n) = \left| \left\lfloor \log n - \left\lfloor \log n \right\rfloor - 0.1 \right\rfloor \right| \left\lfloor \frac{\left\lfloor n / \left\lfloor \log n - 1 \right\rfloor \right\rfloor \left\lfloor \log n - 1 \right\rfloor}{n} \right\rfloor.$$

If f(n) = 0, then $\pi(n) \nmid n$. On the other hand, if $\pi(n) \mid n$, then f(n) = 1. *Proof.*

\bullet Part 1

Suppose that

$$f(n) = g(n)h(n),$$

where

$$g(n) = \left| \left\lfloor \log n - \left\lfloor \log n \right\rfloor - 0.1 \right\rfloor \right|$$

and

$$h(n) = \left\lfloor \frac{\lfloor n / \lfloor \log n - 1 \rfloor \rfloor \lfloor \log n - 1 \rfloor}{n} \right\rfloor.$$

To begin with, if $n \ge 60184$, then $\log n - \lfloor \log n \rfloor$ can never be equal to 0.1. Now, when $\log n - \lfloor \log n \rfloor < 0.1$ we have $-1 < \log n - \lfloor \log n \rfloor - 0.1 < 0$ and hence $\lfloor \lfloor \log n - \lfloor \log n \rfloor - 0.1 \rfloor \rfloor = 1$. On the other hand, when $\log n - \lfloor \log n \rfloor > 0.1$ we have $0 < \log n - \lfloor \log n \rfloor - 0.1 < 1$ and hence $\lfloor \lfloor \log n - \lfloor \log n \rfloor - 0.1 \rfloor \rfloor = 0$. This means that if n is any integer ≥ 60184 , then g(n) equals either 0 or 1. We can also say that if $n \ge 60184$ and g(n) = 0, then $\log n - \lfloor \log n \rfloor > 0.1$, which implies that $\pi(n) \nmid n$ (according to Theorem 2.3). (This means that if $n \ge 60184$ and $\pi(n) \mid n$, then g(n) = 1.)

• Part 2

If $n \ge 60184$, then

$$\left\lfloor \frac{n}{\lfloor \log n - 1 \rfloor} \right\rfloor \le \frac{n}{\lfloor \log n - 1 \rfloor},$$

which means that

$$\left\lfloor \left\lfloor \frac{n}{\lfloor \log n - 1 \rfloor} \right\rfloor / \frac{n}{\lfloor \log n - 1 \rfloor} \right\rfloor = \left\lfloor \frac{\lfloor n / \lfloor \log n - 1 \rfloor \rfloor \lfloor \log n - 1 \rfloor}{n} \right\rfloor = h(n)$$

equals either 0 or 1. If h(n) = 0, then *n* is not divisible by $\lfloor \log n - 1 \rfloor$, which implies that $\pi(n) \nmid n$ (according to Theorem 2.2). In other words, if $n \ge 60184$ and h(n) = 0, then $\pi(n) \nmid n$. (This means that if $n \ge 60184$ and $\pi(n) \mid n$, then h(n) = 1.)

• Part 3

There are two possible outputs for g(n) (0 or 1) as well as two possible outputs for h(n) (0 or 1). This means that for $n \ge 60184$ we have either

$$g(n)h(n) = 0 \cdot 0 = 0,$$

or

or

$$g(n)h(n) = 1 \cdot 0 = 0,$$

 $q(n)h(n) = 0 \cdot 1 = 0,$

or

$$g(n)h(n) = 1 \cdot 1 = 1.$$

If f(n) = g(n)h(n) = 0, then at least one of the factors g(n) and h(n) equals 0, which implies that $\pi(n) \nmid n$ (see Part 1 and Part 2). This means that if $n \ge 60184$ and f(n) = 0, then $\pi(n) \nmid n$. Consequently, if $n \ge 60184$ and $\pi(n) \mid n$, then f(n) = 1.

Theorem 2.10. If $n \ge 60184$ and $n/\pi(n)$ is an integer, then n is a multiple of $\lfloor \log n - 1 \rfloor$ located in the interval $[e^{\lfloor \log n - 1 \rfloor + 1}, e^{\lfloor \log n - 1 \rfloor + 1.1}]$.

Proof. According to Theorems 2.2 and 2.3, if $n \ge 60184$ and $n/\pi(n)$ is an integer, then

$$\frac{n}{\pi(n)} = \lfloor \log n - 1 \rfloor \Rightarrow n = \pi(n) \lfloor \log n - 1 \rfloor$$

and

$$\operatorname{frac}(\log n) = \log n - \lfloor \log n \rfloor \le 0.1$$

The fact that $\operatorname{frac}(\log n) \leq 0.1$ implies that n is located in the interval

 $[e^k, e^{k+0.1}]$

for some positive integer k. In other words, we have

$$e^k < n < e^{k+0.1} \Rightarrow k < \log n < k+0.1 \Rightarrow k-1 < \log n - 1 < k-0.9$$

which means that

$$k - 1 = \lfloor \log n - 1 \rfloor$$
$$k = \lfloor \log n - 1 \rfloor + 1.$$

Remark 2.11. Suppose that b is any fixed integer ≥ 12 . Theorem 2.10 implies that if n is an integer in the interval $[e^b, e^{b+0.1}]$ and at the same time n is not a multiple of b-1, then $\pi(n) \nmid n$. This means that if $n \geq 60184$ and $\pi(n)$ divides n, then n is located in the interval $[e^b, e^{b+0.1}]$ for some positive integer b and n is a multiple of b-1.

The following theorem follows from Theorems 1.1 and 2.10 and from the fact that $n/\pi(n) < 11$ for $n \leq 60183$ (this fact can be checked using software):

Theorem 2.12. Let c be any fixed integer ≥ 12 . In the interval $[e^c, e^{c+0.1}]$ there is always an integer n such that $\pi(n)$ divides n. In other words, in the interval $[e^c, e^{c+0.1}]$ there is always an integer n such that $\pi(n) = n/(c-1)$.

3 Conclusion and Further Discussion

The following are the main theorems of this paper:

Theorem 2.9. Let *n* be an integer ≥ 60184 and let

$$f(n) = \left| \left\lfloor \log n - \left\lfloor \log n \right\rfloor - 0.1 \right\rfloor \right| \left\lfloor \frac{\left\lfloor n / \left\lfloor \log n - 1 \right\rfloor \right\rfloor \left\lfloor \log n - 1 \right\rfloor}{n} \right\rfloor$$

If f(n) = 0, then $\pi(n) \nmid n$. On the other hand, if $\pi(n) \mid n$, then f(n) = 1.

Theorem 2.10. If $n \ge 60184$ and $n/\pi(n)$ is an integer, then n is a multiple of $\lfloor \log n - 1 \rfloor$ located in the interval $[e^{\lfloor \log n - 1 \rfloor + 1}, e^{\lfloor \log n - 1 \rfloor + 1.1}]$.

Theorem 2.12. Let c be any fixed integer ≥ 12 . In the interval $[e^c, e^{c+0.1}]$ there is always an integer n such that $\pi(n)$ divides n. In other words, in the interval $[e^c, e^{c+0.1}]$ there is always an integer n such that $\pi(n) = n/(c-1)$.

We recall that Golomb [3] proved that for every integer n > 1 there exists a positive integer m such that $m/\pi(m) = n$. Suppose now that R is the sequence of numbers generated by the function $d(n) = n/\pi(n)$ $(n \in \mathbb{Z}$ and n > 1). In other words,

R = (2, 1.5, 2, 1.66..., 2, 1.75, 2, 2.25, 2.5, ...).

Suppose also that S is the sequence of *integers* generated by the function $d(n) = n/\pi(n)$. In other words,

S = (2, 2, 2, 2, 3, 3, 3, 4, 4, ...).

Motivated by Golomb's result and Theorem 2.12 we ask the following question:

Question 3.1. Are there infinitely many positive integers a such that in the interval $[e^a, e^{a+0.1}]$ there are at least two distinct positive integers n_1 and n_2 such that $\pi(n_1) \mid n_1$ and $\pi(n_2) \mid n_2$? In other words, are there infinitely many positive integers n that can be expressed as $m/\pi(m)$ in more than one way?

Now, let S_k denote the kth term of sequence S. Clearly, Question 3.1 is equivalent to the following question:

Question 3.2. Are there infinitely many positive integers k such that $S_k = S_{k+1}$?

References

[1] Dusart, P. "Estimates of Some Functions Over Primes without R.H." arXiv:1002.0442 [math.NT], 2010.

- [2] Gaitanas, K. N. "An explicit formula for the prime counting function." arXiv:1311.1398 [math.NT], 2013.
- [3] Golomb, S. W. "On the Ratio of N to $\pi(N)$." The American Mathematical Monthly. Vol. 69, No. 1, pp. 36–37, 1962.
- [4] Rosser, J. B.; Schoenfeld, L. "Approximate formulas for some functions of prime numbers." *Illinois Journal of Mathematics*. Vol. 6, No. 1, pp. 64–94, 1962.