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ABSTRACT

Markov Chain Monte Carlo (MCMC) algorithms and Sequential Monte Carlo (SMC) methods (a.k.a., particle
filters) are well-known Monte Carlo methodologies, widely used in different fields for Bayesian inference and
stochastic optimization. The Multiple Try Metropolis (MTM) algorithm is an extension of the standard Metropolis-
Hastings (MH) algorithm in which the next state of the chain is chosen among a set of candidates, according to
certain weights. The Particle MH (PMH) algorithm is another advanced MCMC technique specifically designed
for scenarios where the multidimensional target density can be easily factorized as multiplication of conditional
densities. PMH combines jointly SMC and MCMC approaches. Both, MTM and PMH, have been widely studied
and applied in literature. PMH variants have been often applied for the joint purpose of tracking dynamic variables
and tuning constant parameters in a state space model. Furthermore, PMH can be also considered as an alternative
particle smoothing method. In this work, we investigate connections, similarities and differences among MTM
schemes and PMH methods. This study allows the design of novel efficient schemes for filtering and smoothing
purposes in state space models. More specially, one of them, called particle Multiple Try Metropolis (P-MTM),
obtains very promising results in different numerical simulations.

Keywords: Bayesian Inference; Particle Filter; Particle smoother; Markov Chain Monte Carlo (MCMC); Multiple
Try Metropolis; Particle MCMC.

1. INTRODUCTION

Monte Carlo statistical methods are powerful tools for numerical inference and stochastic optimization [34, 21].
Markov Chain Monte Carlo (MCMC) [15, 19, 20, 34] and Sequential Monte Carlo (SMC) algorithms (a.k.a.,
particle filters) [2, 7, 10, 29] are classical Monte Carlo techniques employed in order to approximate an otherwise-
incalculable (analytically) integral involving a complicated target probability density function (pdf) [21, 20] (the
posterior distribution in Bayesian inference). MCMC algorithms produce a Markov chain with a stationary
distribution that coincides with the target pdf, whereas SMC methods (a.k.a., particle filters) yield an approximation
of the target measure by weighted samples.

The Multiple Try Metropolis (MTM) method of [22], [21, Chapter 5] is an advanced MCMC technique, which is
extension of the well-known Metropolis-Hastings (MH) algorithm [28, 13]. In MTM, the next state of the chain is
selected among a set of candidates according to some suitable weights. This enables the MTM sampler to make large
step-size jumps without a lowering of the acceptance rate and thus the exploration of a larger portion of the state
space is facilitated. A famous special case of MTM, well-known in molecular simulation field, is the orientational
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bias Monte Carlo technique [11]. Due to its good performance, several generalizations of the basic MTM scheme
[22] can be found in literature: with correlated candidates [26, 33], more general form of the weights and different
frameworks [18, 27, 31, 39], with adaptive and interacting proposal pdfs [4]. Interesting and related studies about
MTM or the use of multiple auxiliary variables for building acceptance probabilities within a MH approach can be
found in [3, 37, 25].

Independently from the derivation of the MTM schemes, the class of Particle MCMC methods (P-MCMC) has
been proposed [1, 6, 30, 38] in literature. P-MCMC methods are specifically designed to solve inference problems
in state space models, combining SMC and the MCMC approaches. In this work, we focus on a specific P-MCMC
method, called Particle Metropolis-Hastings (PMH) algorithm [1, 6]. The idea behind PMH is first to approximate
the target measure with a delta approximation based on weighted samples obtaining by a particle filter, and then to
use this approximation as proposal pdf within MH technique. The Particle Marginal MH technique is a variant of the
standard PMH method designed in order to estimate jointly the sequence of hidden states and the static parameters of
the model [38]. Note that the standard PMH scheme can be interpreted as a particle smoother [9, 10, 12, 16, 17, 36]
since, at each iteration of PMH, the weighted paths obtained by a particle filter are employed in order to update the
previous estimation according to a suitable MH-type rule, taking into account all the received observations.1

The authors in [1] discuss the relationships of P-MCMC with other existing techniques. They mention and
describe precisely the relationship with the so-called configurational bias Monte Carlo method [35],[21, Chapter
5]. This technique is also strictly connected to the MTM scheme. The authors also allude quickly to the MTM
method [22]. However, the relationship between MTM and PMH deserves a more careful look. In this work,
we show that MTM and PMH algorithms are strictly connected. PMH can be interpreted as an MTM using an
independent proposal pdf which generates correlated candidates, drawn and weighted sequentially through a particle
filter. In order to clarify the relationship between MTM and PMH, we recall the batch importance sampling (IS) and
sequential importance sampling (SIS) methods and point out some relevant considerations about different estimators
of the marginal likelihood (a.k.a, Bayesian evidence) [9]. Furthermore, we also introduce a variant of the MTM
scheme with independent proposal pdf. These observations are essential in order to show the connection between
MTM and PMH.

This exhaustive study allows the design of novel more efficient schemes, taking advantage of the different
alternatives and analyses already provided in literature about both techniques [37, 27, 30, 38]. Hence, we propose
novel possible MTM and PMH schemes. One of them, called Particle MTM (P-MTM), combines the standard PMH
and MTM kernels, mixing properly the main advantages of both: the sequential construction of the different tries
by PMH, and the possibility given an MTM scheme of considering several candidates perturbing the previous state
of the chain. P-MTM provide excellent performance as we show with numerical results. In one simulation, we test
P-MTM as a particle smoother in order to make inference of a sequence of hidden states in a stochastic volatility
model, obtaining very favorable results.

The paper is structured as follows. In Section 2, we recall some required concepts about importance sampling
and resampling techniques. The MTM methods are described in Section 3 whereas the description of the PMH
algorithms and their relationship with the MTM schemes is provided in Section 4. Novel schemes are discussed in
Section 5. Section 6 is devoted to the numerical simulations and, in Section 7, we provide some conclusions.

2. IMPORTANCE SAMPLING

In many applications, we desire to infer a vector of unknown parameters, x ∈ RD×ζ , give a set of observed data,
y ∈ RdY . In these cases, one is interested in approximating different moments the posterior density π̄(x|y) that,

1Let us denote π̄(x1:D|y1:D) the posterior of the hidden states x1:D given the received observations y1:D . PMH schemes can be
also employed for improving the approximations of the marginal posteriors π̄(xd|y1:D) with d ≤ D, jointly with the complete posterior
π̄(x1:D|y1:D). PMH can be interpreted as a way to combine properly several independent runs of a particle filter (after obtaining all the
observations y1:D), generating a ergodic Markov chain with invariant distribution π̄(x1:D|y1:D) [9].



hereafter, we simply denote as π̄(x). More specifically, in this work, we denote the variable of interest as

x = x1:D = [x1, x2, . . . , xD] ∈ D = XD ⊆ RD×ζ ,

where xd ∈ X ⊆ Rζ for all d = 1, . . . , D. The target density is indicated as π̄(x) = 1
ZD
π(x), where

ZD =

∫

D
π(x)dx, (1)

is often known as marginal likelihood (a.k.a., Bayesian inference). In many application, we are only able to evaluate
π(x) since ZD is unknown. Moreover, in general, we are not able to draw random samples from π̄(x). Monte Carlo
techniques employ a simpler proposal density, denoted as q(x), with support X ⊆ RD×ζ ,2 for generating possible
random candidates. Then, these candidates are filtered using some suitable procedure, in order to produce a particle
approximation of π̄(x) and also to provide an estimation of ZD.

2.1. Batch and Sequential Importance Sampling

A well-known Monte Carlo technique is the importance sampling (IS) method. IS provides an approximation with
weighted samples of the measure of π. More specifically, N samples x(1), ...,x(N) are drawn from a proposal pdf
q(x) and then they are weighted as

w
(n)
D =

π(x(n))

q(x(n))
, n = 1, . . . , N, (2)

where the super-index n in w(n)
D denotes the corresponding particle and the subindex D refers to the dimension of

x, i.e., x = x1:D = [x1, ..., xD]. Thus, the particle approximation is

π̂D(x) =
N∑

n=1

w̄
(n)
D δ(x− x(n)), (3)

where we have denoted the normalized weights as w̄(n)
D =

w
(n)
D∑N

i=1 w
(i)
D

. An estimation of ZD is given by

ẐD =
1

N

N∑

n=1

w
(n)
D . (4)

In high dimensional spaces (x ∈ D = XD ⊆ RD×ζ), an equivalent sequential procedure, called sequential
importance sampling (SIS), is preferred to the previous batch approach. Recall that x = x1:D = [x1, ..., xD],
we can observe that a target pdf π̄(x) can always be expressed as

π̄(x) ∝ π(x) = γ1(x1)

D∏

d=2

γd(xd|x1:d−1) (5)

using the chain rule [32] where γ1(x1) is a marginal pdf and γd(xd|x1:d−1) are conditional pdfs. We also consider
the joint probability of the partial vector x1:d = [x1, . . . , xd],

π̄d(x1:d) =
1

Zd
πd(x1:d) ∝ πd(x1:d) = γ1(x1)

d∏

j=2

γj(xj |x1:j−1), (6)

2For the sake of simplicity, in the observations of the rest of the work, we consider the proposal function q(x) be normalized, i.e.,∫
X q(x)dx = 1.



where
Zd =

∫

X d
πd(x1:d)dx1:d, (7)

and, clearly, we have π̄D(x1:D) = π̄(x). In many applications, the target appears directly decomposed as in Eq.
(5), e.g., as in state-space models. However, in general, one needs to marginalize several times the target π̄(x) for
obtaining analytically the conditional pdfs γd(xd|x1:d−1), d = 1, . . . , D. Given the target in Eq. (5), we can also
consider a proposal pdf decomposed in the same fashion

q(x) = q1(x1)q2(x2|x1) · · · qD−1(xD−1|x1:D−2)qD(xD|x1:D−1).
In a batch IS scheme, given an n-th sample x(n) = x

(n)
1:D ∼ q(x), we assign the importance weight

w
(n)
D =

π(x(n))

q(x(n))
=
γ1(x

(n)
1 )γ2(x

(n)
2 |x

(n)
1 ) · · · γD(x

(n)
D |x

(n)
1:D−1)

q1(x
(n)
1 )q2(x

(n)
2 |x

(n)
1 ) · · · qD(x

(n)
D |x

(n)
1:D−1)

.

The previous expression suggests a recursive procedure for computing the importance weights: starting with

w
(n)
1 =

π(x
(n)
1 )

q(x
(n)
1 )

and then

w
(n)
d = w

(n)
d−1β

(n)
d ,

=
d∏

j=1

β
(n)
j , d = 1, . . . , D,

(8)

where we have set

β
(n)
1 = w

(n)
1 and β

(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

, (9)

for d = 2, . . . , D. Thus, given N samples x(1), . . . ,x(N), finally we obtain the particle approximations of the
sequence of pdfs π̄d(x1:d) as

π̂d(x1:d) =

N∑

n=1

w̄
(n)
d δ(x1:d − x(n)1:d ), d = 1, . . . , D, (10)

and an estimator of each normalizing constant Zd is given by

Ẑd =
1

N

N∑

n=1

w
(n)
d =

1

N

N∑

n=1




d∏

j=1

β
(n)
j


 . (11)

However, an alternative equivalent formulation is often used

Z̃d =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
, (12)

=

d∏

j=1

[∑N
n=1w

(n)
j∑N

n=1w
(n)
j−1

]
, (13)

=

d∏

j=1

[
Ẑj

Ẑj−1

]
=
Ẑ1

Ẑ0

Ẑ2

Ẑ1

× . . .× Ẑd

Ẑd−1
= Ẑd, (14)

where, for simplicity, we have set Ẑ0 = 1. A alternative derivation of the (final) estimator Z̃D is given in Appendix
A.

Remark 1. In SIS, there are two equivalent formulations, Ẑd in Eq. (4) and Z̃d in Eq. (12) of estimator of Zd.



2.2. Sequential Importance Resampling (SIR)

Sequential Importance Resampling (SIR) [21, 34] combines the sequential construction of the importance weights
as in SIS with the application of resampling steps [7, 8]. Namely, when some pre-established criterion is fulfilled
[7, 8, 23], N independent particles are drawn according to the probability mass π̂d(x1:d). Then, the resampled
particles are propagated for providing the next approximation π̂d+1(x1:d+1). More specifically, let us consider that
a resampling step is performed at the d-th iteration. Hence, N samples x(j)1:d are drawn from π̂d(x1:d), and then the
corresponding weights are set to the same value [7, 8]. A proper choice [24] is to set the unnormalized importance
weights

w
(n)
d = Ẑd, ∀j = 1, . . . , N. (15)

i.e., w(1)
d = w

(2)
d = . . . = w

(N)
d , equal for each resampled particle x(n)1:d . Hence, after a resampling step, we have

that w̄d(x
(n)
1:d ) = 1

N , for all j = 1, . . . , N . One reason why this is a good choice, for instance, is that defining the
following weights

ξ
(n)
d ) =

{
w

(n)
d , without resampling at d-th iteration,

Ẑd, with resampling at d-th iteration.
(16)

then, in any case, 1
N

∑N
n=1 ξ

(n)
d = Ẑd, as expected. Therefore, the weight recursion for SIR becomes

ξ
(n)
d = ξ

(n)
d−1β

(n)
d , where ξ

(n)
d−1 =

{
ξ
(n)
d−1, without res. at (d− 1)-th iter.,

Ẑd−1, with res. at (d− 1)-th iter.
(17)

See Appendix A for further details.

Remark 2. With the recursive definition of the weights ξ(n)d in Eq. (17), the two estimators

Ẑd =
1

N

N∑

n=1

ξ
(n)
d−1β

(n)
d , Z̃d =

d∏

j=1

[
N∑

n=1

ξ̄
(n)
j−1β

(n)
j

]
(18)

where ξ̄(n)j−1 =
ξ
(n)
j−1∑N

i=1 ξ
(i)
j−1

, are both valid and equivalent estimators of Zd [24].

For instance, if the resampling is applied at each iteration, observe that they become

Z̃d =

d∏

j=1

[
1

N

N∑

n=1

β
(n)
j

]
, (19)

and

Ẑd = Ẑd−1

[
1

N

N∑

n=1

β
(n)
d

]
=

d∏

j=1

[
1

N

N∑

n=1

β
(n)
j

]
, (20)

and clearly coincide. Note that, w.r.t. the estimator in Eq. (11) (for SIS, i.e., without resampling), the operations
of product and sum are inverted. Figure 2 depicts different examples of generation of weighted samples x(n) with
or without employing resampling steps. More specifically, Figure 2 shows the components x1,(n) . . . , x

(n)
D of each

sample, with D = 10. Remark 2 is necessary to to describe exhaustively the relationship between MTM and PMH
algorithms. Below, we recall the MTM schemes and discuss a novel suitable variant in order to link MTM to PMH.



Table 1. Generic MTM algorithm.

1. Choose a initial state x0 and the total number of iterations K.

2. For k = 1, . . . ,K:

(a) Draw N samples from x(i) ∼ q(x|xk−1), i = 1, . . . , N .

(b) Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w
(i)
D =

π(x(i))

q(x(i)|xk−1)
, i = 1, . . . , N.

Namely, draw a sample x∗ from

π̂D(x) =

N∑
n=1

w̄
(n)
D δ(x− x(n)).

(c) Draw N − 1 auxiliary samples z(j) ∼ q(x|x∗), j = 1, . . . , N − 1, and set z(N) = xk−1.

(d) Compute the importance weights also for the auxiliary points,

ρ
(i)
D =

π(z(i))

q(z(i)|x∗)
, i = 1, . . . , N.

(e) Set xk = x∗ with probability

α = 1 ∧
∑N
i=1 w

(i)
D∑N

i=1 ρ
(i)
D

,

otherwise, with probability 1− α, set xk = xk−1.

3. MULTIPLE TRY METROPOLIS (MTM) ALGORITHMS

The Multiple Try Metropolis (MTM) algorithm [22] is an advanced MCMC technique, where N candidates are
generated each iterations. According to some suitable weights, one candidate is chosen and accepted as new state
with a suitable probability α. The MTM steps with a generic proposal q(x|xk−1), depending on the previous
state, are summarized in Table 1 where we have denoted a ∧ b = min[a, b]. For N = 1, the MTM algorithm
becomes the standard Metropolis-Hastings (MH) method [21, 34]. We consider importance weights for facilitating
the comparison with other techniques. However, different kind of weights could be applied [22, 27]. The MTM
method generates a reversible Markov chain that converges to π̄(x) [22, 27].
If the proposal pdf is independent from the previous state of the chain, i.e., q(x), the algorithm can be simplified.
indeed, the steps 2c and 2d can be removed in the MTM scheme. Namely, one does not need to generate the auxiliary
samples at step 2c. Indeed, in this case, we could directly set z(j) = x(j), j = 1, . . . , N − 1. The simplified MTM
algorithm (I-MTM) is given in Table 1. A graphical representation of a MTM scheme is provided in Figure 1, with
D = 1 and N = 2.

Alternative version of the I-MTM method (I-MTM2). In this work, we highlight that the I-MTM method can
be designed in an alternative way. With a proposal pdf independent from the previous state, we have seen that we
can set z(j) = x(j), j = 1, . . . , N − 1, because each x(j) is itself drawn from q(x). With the same argument, we
can also use the samples generated in the previous iteration of the algorithm as auxiliary points, since all the samples
are generated independently from the same proposal pdf. Namely, the alternative suitable version of the I-MTM is
summarized in Table 3. Note that, in this case, we can write the acceptance probability α as

α = 1 ∧ Ẑ∗D

Ẑ
(k−1)
D



x(1) x(2)

w
(2)
1

w
(1)
1

q(x|xk�1)

xk�1 z(1)z(2) = xk�1

q(z|x⇤)

x⇤ = x(2)

⇢
(2)
1

⇢
(1)
1

↵ = 1 ^ w
(1)
1 + w

(2)
1

⇢
(1)
1 + ⇢

(2)
1

Forward Backward Test
xk = x⇤

xk = xk�1

or

Fig. 1. Sketch of a generic MTM method with D = 1 and N = 2 tries. In this example, the second candidate is

selected as x∗ = x(2). It has been selected with probability w̄(1)
1 =

w
(1)
1

w
(1)
1 +w

(2)
1

. The auxiliary points are z(1) ∼ q(z|x∗)
and z(2) = xk−1.

Table 2. MTM with independent proposal (I-MTM).

1. Choose a initial state x0 and the total number of iterations K.

2. For k = 1, . . . ,K:

(a) Draw N samples from x(i) ∼ q(x), i = 1, . . . , N .

(b) Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w
(i)
D =

π(x(i))

q(x(i))
, i = 1, . . . , N.

Moreover, we denote as w∗D and wD,k−1, the weights corresponding to x∗ and xk−1, respectively.

(c) Set xk = x∗ with probability

α = 1 ∧
∑N
i=1 w

(i)
D∑N

i=1 w
(i)
D − w∗ + wD,k−1

= 1 ∧
∑N
i=1 w

(i)
D∑N

i=1 ρ
(i)
D

, (21)

where the values ρ(i)D denote the importance weights of {z(1), . . . , z(N)} = {x(1), . . . ,x(N)} \ {x∗} ∪ {xk−1}.
Otherwise, set xk = xk−1.

where Ẑ∗D and Ẑ(k−1)
D are both estimators of ZD.

4. PARTICLE METROPOLIS-HASTINGS ALGORITHM AND ITS RELATIONSHIP WITH MTM

Consider that we are able to factorize the target density as

π̄(x) ∝ π(x) = γ1(x1)γ2(x2|x1) · · · γD(xD|x1:D−1).

The Particle Metropolis Hastings (PMH) method [1] is another MCMC technique proposed independently from the
MTM algorithm, specifically designed for being applied in this framework. The complete description is provided in
Table 4. At each iteration, a particle filter is run in order to provide a particle approximation by N weighted samples



Table 3. Alternative I-MTM algorithm (I-MTM2).

1. Choose a initial state x0, the total number of iterations K and obtain an estimation Ẑ(0) ≈ Z .

2. For k = 1, . . . ,K:

(a) Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w
(i)
D =

π(x(i))

q(x(i))
, i = 1, . . . , N.

(b) Set xk = x∗ and Ẑ(k) = Ẑ∗ = 1
N

∑N
i=1 w

(i)
D with probability

α = 1 ∧
1
N

∑N
i=1 w

(i)
D

Ẑ(k−1)
= 1 ∧ Ẑ∗D

Ẑ
(k−1)
D

otherwise, with probability 1− α, set xk = xk−1 and Ẑ(k) = Ẑ(k−1).

Table 4. Particle Metropolis-Hastings (PMH) algorithm.

1. Choose a initial state x0, the total number of iterations K and obtain an estimation Ẑ(0) ≈ Z.

2. For k = 1, . . . ,K:

(a) Using a proposal pdf of type
q(x) = q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1),

we employ SIR (see Section 2.2) for drawing with N particles and weighting properly them, {x(i), w
(i)
D }

N
i=1. Namely,

we obtain a particle approximation of the measure of target pdf

π̂D(x) =

N∑
i=1

w̄
(i)
D δ(x− x(i)).

Furthermore, we also obtain Ẑ∗ in Eq. (11), or Z̃∗ in Eq. (12).

(b) Draw x∗ ∼ π̂(x), i.e., choose a particle x∗ = {x(1), . . . ,x(N)} with probability w̄(i)
D , i = 1, ..., N .

(c) Set xk = x∗ and Ẑ(k) = Ẑ∗ with probability

α = 1 ∧ Ẑ∗

Ẑ(k−1)
, (22)

otherwise set xk = xk−1 and Ẑ(k) = Ẑ(k−1).

of the measure of the target. Then, a sample among the N weighted particles is chosen by one resampling steps.
This selected sample is then accepted or rejected as next state of the chain according to an MH-type acceptance
probability, which involves two estimators of ZD. Both estimators Ẑ and Z̃ can be used in PMH (although the
original algorithm is described with the use of Z̃ [1]), if the resampled particles are properly weighted as shown
in Eq. (15) [24]. A generalization of PMH for handling both dynamic and fixed parameters (as hidden states and
parameters of the model, respectively), called Particle Marginal MH algorithm, is described in Appendix B.

Smoothing. PMH is a particle smoother since the outputs of different run of a particle filter (i.e., at each run, N
weighted paths obtained with a SIR procedure) are further processed through the MH acceptance functions, taking
into account all the received observations.
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(b) Batch-IS or SIS with qd(xd|xd−1) and N =
40.
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(c) SIR using qd(xd|xd−1) and resampling at the
iterations d = 4, 8 (with N = 40).

Fig. 2. Examples of application of the IS technique. We consider as target density a multivariate Gaussian pdf, π̄(x) =
∏10
d=1N (xd|2, 1

2
).

In each figure, every component of different particles are represented, so that each particle x(i) forms a path. The normalized weights w̄n
corresponding to each figure are also shown. The line-width of each path is proportional to the corresponding weight w̄n. The particle

corresponding to the greatest weight is always depicted in black. (a) Batch IS or SIS with N = 5 particles and q(x) =
∏d
d=1N (xd|0,

√
2).

(b) Batch IS or SIS with N = 40 particles and q(x) = N (x1|2, 1)
∏d
d=2N (xd|xd−1, 1). (c) SIR with N = 40 particles and

q(x) = N (x1|2, 1)
∏d
d=2N (xd|xd−1, 1) and resampling steps at the iterations d = 4, 8.

4.1. Relationship between MTM and PMH

A simple look at the alternative version of the MTM technique with independent proposal (I-MTM2), introduced in
Section 3, and the PMH method, shows that are strictly related. Indeed, the structure of the two algorithms coincides.
The connections and differences are listed below:

• The main difference lies that the candidates in PMH are generated sequentially, using a SMC procedure (i.e.,
by a particle filter). If the resampling steps in the SMC are not applied them I-MTM2 and PMH are exactly
the same algorithm, where the candidates are drawn in a batch setting or sequential way. Namely, I-MTM2
generates directly x(i) = [x

(i)
1 , . . . , x

(i)
D ] from a pdf q(x) in the space x ∈ D whereas PMH draws sequentially

each component x(i)d of x from qd(xd|x(i)1:d−1) (see also Figure 4, for further clarifications).

• The use of resampling steps is the main difference between the generation procedures of PMH and I-MTM2.
Owing to the use of the resampling, the candidates {x(1), . . . ,x(N)} proposed by PMH are not independent,
differently from the MTM schemes considered in this work. Without resampling, the generated samples
x(i) = x

(i)
1:D would be independent as in I-MTM2. The generation of correlated samples can be also considered

in MTM methods, as simply shown for instance in [5], without jeopardizing the ergodicity of the chain. Thus,
more precisely, PMH can be considered as an I-MTM2 scheme using correlated samples (e.g., as in [5]), and
where the candidates are generated sequentially.

For clarifying this point, in Figure 2 we show different particles weighted with IS weights (the line-width of
each path is proportional to the corresponding normalized weight w̄n). More specifically, we represent each
component of x(n)d , d = 1, . . . , D = 10 of each particle x(n) = x

(n)
1:10 with n = 1, . . . , N ∈ {5, 40}. The

target density is a multivariate Gaussian pdf, π̄(x) =
∏10
d=1N (xd|2, 12), i.e., with expected value µd = 2,

for d = 1, . . . , 10. Figures 2(a)-(b) corresponds to the application of IS with two different proposal pdfs and
without resampling. In Figure 2(a), the components x(n)d are independent. In Figure 2(b), the components x(n)d



within each sample x(n) are correlated, but the samples x(n), n = 1, . . . , N , are still independent. In Figure
2(c) two resampling are also applied at the iterations d = 4, 8, generating correlation among the particles x(n),
n = 1, . . . , N , as well. Figure 2(c) corresponds to the sample generation in PMH.

• In the correspoding standard formulations, I-MTM2 uses the estimator ẐD in Eq. (4) whereas PMH has
been proposed using Z̃D, given in Eq. (12). However, they are equivalent formulation of an estimator of the
normalizing constant ZD (see Remark 2), if the resampled particles are proper weighted [24].

• The PMH approach is preferable in high dimension, when the target can be factorized as in Eq. (5), since the
use of the resampling steps can provide a better proposal generation procedure.

5. NOVEL SCHEMES

The previous considerations also allow us to design novel PMH schemes. For instance, we can easily suggest an
alternative proper acceptance probability,

α = 1 ∧ NẐ∗

NẐ∗ − w∗D + wD,k−1
. (23)

We denote as var-PMH the variant of the PMH technique which uses the probability α above, instead of the
probability α in Eq. (22). Namely, var-PMH is identical with the PMH method in Table 4, replacing Eq. (22)
with Eq. (23). The var-PMH structure is equivalent (within a sequential framework) to I-MTM of Table 2, in the
same fashion as PMH in Table 4 is equivalent to I-MTM2 of Table 3.

State Dependent PMH (SD-PMH). Moreover, we can also extend the standard PMH method employing a
state-dependent proposal pdf (dependent from the previous state), instead of an independent proposal (namely,
independent from the previous state) as in Table 4. This novel scheme, denoted as SD-PMH, is outlined in Table 5.
In this case, the generation of a backward path is required at step 2c. Hence, in SD-PMH, we have this additional
computation cost. However, the generated backward paths could be also recycled for estimating the hidden states
(nevertheless, this requires and deserves more specific analysis). The validity of SD-PMH is ensured since it
corresponds to the MTM scheme in Table 1. In SD-PMH, the approximation π̂D is provided considering with
correlated samples due to the resampling, unlike in MTM. However, it does not jeopardize the ergodicity (as shown,
e.g., in [5]). Furthermore, we consider the use of resampling steps only at certain 0 ≤ R ≤ K pre-established
iterations, d1, . . . , dR. If R = 0, no resampling it is applied so that we obtain a standard MTM scheme with a
sequential generation of the tries. If R = K, the resampling is applied at each iteration, so that we have a bootstrap
filter for generating the samples [7, 9]. Figure 3(a) shows a sketch of the different schemes discussed in this work.
The MTM schemes are given on the left side, whereas the corresponding PMH approaches are provided on the right.
The boxes with dashed contours represent the novel schemes introduced in this work. As an example of proposal in
SD-PMH scheme, we can consider

qd(sd|s1:d−1, x1:d,k−1) = qd(sd|sd−1, xd,k−1),

so that the complete proposal is q(s|xk−1) = q1(s1|x1,k−1)
∏D
d=2 qd(sd|sd−1, xd,k−1). However, it is not

straightforward to choose and tune properly the components qd(sd|sd−1, xd,k−1).

Particle Multiple Try Metropolis (P-MTM) algorithm. A simpler and robust scheme consists in performing
alternatively a standard PMH kernel (or var-PMH), denoted as KPMH(xt|xt−1) and an MTM kernel with a random
walk proposal pdf, denoted as KMTM (xt|xt−1). Namely, Particle Multiple Try Metropolis (P-MTM) algorithm is
formed by the following steps:



1. Choose an initial state x0, and set t = 1.

2. While t < T :

(a) Generate a new state using one step of PMH, i.e., xt ∼ KPMH(x|xt−1), generating sequentially with
an independent proposal pdf q(x) = q1(x1)

∏D
d=2 qd(xd|xd−1), and set t = t+ 1.

(b) Generate a new state using one step of MTM, xt ∼ KMTM (x|xt−1), using a random walk proposal pdf,
i.e., q(x|xt−1), in order to draw the N candidates, and set t = t+ 1.

The two kernels are linked together and, since each kernel leaves invariant the target pdf π̄, it is to show that the
product of two valid kernels also leaves invariant π̄ (see Appendix C). P-MTM exploits the advantage of selecting
N particles component by component using resampling steps (as in PMH) and, jointly, the possibility of proposing
N candidates taking in account the previous state of the chain. Figure 3(b) provides a graphical representation of
P-MTM and Figure 4 gives a sketch of the two generation approaches jointly used in P-MTM.

Gen. MTM

I-MTM

I-MTM2 PMH

PMH
variant of

SD-PMH

(a)

Particle MTM algorithm

KPMH(xt|xt�1) KMTM (xt+1|xt)

(b)

Fig. 3. (a) Graphical representation of the MTM methods and the corresponding PMH schemes. The boxes with
dashed contours contain the novel schemes presented in this work. (b) Graphical sketch of the P-MTM algorithm.

1 2 3 4 5

x(n)

x(n) ⇠ q(x) = q1(x1)
5Y

d=2

q(xd|xd�1)

(a) Sequential generation of a candidate x(n).

1 2 3 4 5

x1,k�1

x2,k�1

x4,k�1

x5,k�1

xk�1

x3,k�1

x(n)

x(n) ⇠ q(x|xk�1)

(b) Generation with a random walk proposal of x(n).

Fig. 4. Examples of generation of one candidate x(n) (with D = 5) (a) with a sequential approach as in PMH, without
considering resampling steps; (b) from a random walk proposal q(x|xk−1) which takes into account the previous state of the
chain xk−1, for instance, q(x|xk−1) =

∏5
d=1 qd(xd|xd,k−1) (if each component is drawn independent from the others).



6. NUMERICAL SIMULATIONS

6.1. Comparison among different particle schemes

In order to the the different techniques, we consider a multidimensional Gaussian target density,

π̄(x) = π̄(x1, . . . , xD) =
D∏

d=1

N (xd|µd, σ2), (24)

with x = x1:D ∈ RD, D = 10, with µ1:3 = 2, µ4:7 = 4, µ8:10 = −1, and σ = 1
2 . We apply I-MTM, I-MTM2,

PMH, Var-PMH (using the acceptance probability in Eq. (23)) and P-MTM for estimating the vector µ1:10. In each
method, we employ Gaussian-piece proposal pdf for the sequential proposal construction of the N candidates, i.e.

q(xd|xd−1) = N (xd|xd−1, σ2p),

setting σp = 2. For the random walk MTM (RW-MTM) part within P-MTM, we consider a Gaussian proposal
qrw(x|xk−1) =

∏D
d=1N (xd|xd,k−1, σ2rw) with σrw = 1 and xk−1 = [x1,k−1, . . . , xD,k−1] is the previous state of

the chain. For all the PMH schemes, we consider to perform resampling at each iteration (in I-MTM and I-MTM2,
clearly no resampling is applied).

We test the techniques considering different value of number of particlesN and number of iterations of the chain
K. We compute the MSE in estimating the vector µ1:10, averaging over 500 independent simulations. The starting
particles, d = 1, are chosen randomly x(i)1 ∼ N (x;−2, 4), for i = 1, . . . , N , at each run and for each method.
Figures 5(a)-(b) show the MSE as function of number of iterations K in semilog scale, keeping fixed the number
of tries N = 3. Figure 5(a) reports the results of the MTM schemes whereas Figure 5(b) reports the results of the
PMH schemes. Figure 5(c) depicts the MSE in the estimation of µ1:10 of function of N , for the PMH methods.
These results show that the use of an acceptance probability of type in Eq. (21)-(23) provide smaller MSE. This
is more evident for small number of candidates N . Namely, the use of acceptance probability in Eq. (23) within
a PMH is preferable since provides better performance. When N grows, the performance of PMH and var-PMH
methods becomes similar, since the acceptance probability approaches 1, in both cases. P-MTM provides excellent
results, outperforming the other schemes. The MSE vanishes to zero when N increases, as expected, confirming the
validity of the novel schemes. The results also shows that performing resampling at each iteration is not optimal and
that a smaller rate of resampling steps could improve the performance [7, 9]. Figure 5(d) depicts 35 different states
xk = x1:10,k at different iteration indices k, obtained with var-PMH (N = 1000 and K = 1000) and the values
µ1:10 shown in dashed line.

6.2. Inference in a stochastic volatility model

We consider a stochastic volatility model where the hidden state xd ∈ R at the d-th iteration follows an AR(1)
process and represents the log-volatility [14] of a financial time series at time t ∈ N. The state space model is given
by {

xd = αxd−1 + ud,

yd = exp
(
xd
2

)
vd,

d = 1, . . . , D. (25)

where α = 0.9 is the AR parameter, and ud and vd denote independent zero-mean Gaussian random variables with
variances σ2u = 1 and σ2v = 0.5, respectively. Note that vd is a multiplicative noise.

We observe a sequence y1:D ∈ RD, and we desire to infer the hidden states x1:D, analyzing the joint posterior
π̄(x1:D|y1:D). A classical particle filtering (PF) approach provides a particle approximation of the posterior
π̄(x1:D|y1:D) and, due to the Monte Carlo approach, also of the marginal posteriors π̄(xd|y1:D) with d ≤ D
(used for smoothing). Unfortunately, when d << D, the standard PF strategy in general fails: the marginal
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Fig. 5. (a)-(b) MSE versus number of iterations K of the chain in semilog scale, fixing the number of particles
N = 3. (a) I-MTM (solid line) and I-MTM2 (dashed line). (b) PMH (solid line), var-PMH (triangles and dashed
line) and P-MTM (stars and dashed line). (c) MSE versus N of the chain in semilog scale for PMH (solid line), var-
PMH ( triangles and dashed line) and P-MTM (stars and dashed line). (d) Different states xk = x1:10,k at different
iteration indices k, obtained with var-PMH (N = 1000 and K = 1000). The values µ1:10 are shown in dashed line
(µ1:3 = 2, µ4:7 = 4 and µ8:10 = −1).



distribution π̄(xd|y1:d) (used for filtering) “occupies a privileged role within the particle filter framework as it is
better characterized than any of the other marginal posterior distributions”, as pointed out in [9]. PMH schemes
can be also employed for improving the approximations of the marginal posteriors π̄(xd|y1:D) with d ≤ D as well
as of the complete posterior π̄(x1:D|y1:D). Indeed, PMH can be interpreted as a way to combine properly several
independent runs of a particle filter (after obtaining all the observations y1:D), generating a ergodic Markov chain
with invariant distribution π̄(x1:D|y1:D).

We test the standard PMH technique [1] and the Particle MTM (P-MTM) method described in Section 5. In
both cases, for the sequential proposal part, we employ a standard bootstrap particle filter (i.e., using the transition
probability p(xd|xd−1) given by the test model as proposal and with resampling at each iteration). For the standard
MTM block in P-MTM we use

q(x|xk−1) =
D∏

d=1

N (xd|xd,k−1, σ2p),

as proposal pdf, with σp = 0.5. We have averaged the results over 500 independent runs. At each run, we generate a
different of observations y1:D from the model, setting D = 100. Clearly, both schemes are compared with the same
number of evaluations of the posteriors (i.e., for instance fixing N , PMH performs K iterations of the chain, and
P-MTM is formed by K

2 of PMH steps and K
2 of MTM steps, as described in Section 5). First, we consider N = 10

and varies the number of total iterations of the algorithms, K fromK = 2 toK = 500. The results are shown in Fig.
6(a). Then, we fix K = 50 and test different values of N , from N = 10 to N = 1000. The results are shown in Fig.
6(b). We can observe that always P-MTM outperforms PMH obtaining smaller values of MSE (with the exception
of one value with a very small number of iterations, K = 2, in Fig. 6(a)).
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Fig. 6. (a) MSE versus number of iterationsK of the generated chain in semi-log scale, fixing the number of particles
(N = 10). (b) MSE versus number of particlesN in semi-log scale, fixing the number of iterations of the algorithms
(K = 50).

7. CONCLUSIONS

In this work, we have highlighted the strong connection between MTM and PMH algorithms. Specifically, PMH
can be interpreted as an MTM using correlated candidates, drawn and weighted sequentially through a particle filter.



We have employed this consideration in order to introduce novel MTM and PMH schemes, mixing properly both
approaches. For instance, the Particle MTM (P-MTM) algorithm combines the standard PMH and MTM kernels,
using the sequential construction of the different tries obtained by PMH, and the possibility of perturbing the previous
state of the chain using a MTM with random-walk proposal density. P-MTM is a very efficient technique for filtering
and smoothing in state space model. We have tested P-MTM, jointly with other techniques, in different numerical
simulations obtaining excellent results. As future line, we plan to design the marginal version of P-MTM for the
joint purpose of inferring dynamic and static parameters in a state space framework.
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[7] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Mı́guez. Particle filtering.
IEEE Signal Processing Magazine, 20(5):19–38, September 2003.

[8] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice. Springer, New
York (USA), 2001.

[9] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. technical
report, 2008.

[10] W. Fong, S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing with application to audio signal
enhancement. IEEE Transactions on Signal Processing, 50(2):438–448, February 2002.

[11] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to applications. Academic
Press, San Diego, 1996.

[12] S. Godsill, A. Doucet, and M. West. Monte Carlo smoothing for nonlinear time series. Journal of the American
Statistical Association, 99(465):156–168, March 2004.

[13] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[14] E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility models. Journal of Business
and Economic Statistics, 12(4):371–389, October 1994.



[15] L. Jing and P. Vadakkepat. Interacting MCMC particle filter for tracking maneuvering target. Digital Signal
Processing, 20:561–574, August 2010.

[16] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models. J. Comput.
Graph. Statist., 1:1–25, 1996.

[17] G. Kitagawa and S. Sato. Monte Carlo smoothing and self-organising state-space model. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice, chapter 9, pages 177–196.
Springer, 2001.

[18] G. Kobayashi and H. Kozumi. Generalized multiple-point Metropolis algorithms for approximate bayesian
computation. Journal of Statistical Computation and Simulation, 85(4), 2015.

[19] J. R. Larocque and P. Reilly. Reversible jump MCMC for joint detection and estimation of sources in colored
noise. IEEE Transactions on Signal Processing, 50(2), February 1998.

[20] F. Liang, C. Liu, and R. Caroll. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples.
Wiley Series in Computational Statistics, England, 2010.

[21] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2004.

[22] J. S. Liu, F. Liang, and W. H. Wong. The Multiple-Try method and local optimization in Metropolis sampling.
Journal of the American Statistical Association, 95(449):121–134, March 2000.

[23] L. Martino, V. Elvira, and F. Louzada. Alternative Effective Sample Size measures for Importance Sampling.
IEEE Workshop on Statistical Signal Processing (SSP), June 2016.

[24] L. Martino, V. Elvira, and F. Louzada. Weighting a resampled particle in Sequential Monte Carlo. IEEE
Workshop on Statistical Signal Processing (SSP), June 2016.

[25] L. Martino and F. Louzada. Issues in the Multiple Try Metropolis mixing. Computational Statistics (to appear),
pages 1–14, 2016.

[26] L. Martino, V. P. Del Olmo, and J. Read. A multi-point Metropolis scheme with generic weight functions.
Statistics & Probability Letters, 82(7):1445–1453, 2012.

[27] L. Martino and J. Read. On the flexibility of the design of Multiple Try Metropolis schemes. Computational
Statistics, 28(6), 2797-2823 2013.

[28] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by fast
computing machines. Journal of Chemical Physics, 21:1087–1091, 1953.

[29] J. Mı́guez, T. Ghirmai, M. F. Bugallo, and P. M. Djurić. A sequential Monte Carlo technique for blind
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A. ALTERNATIVE FORMULATION OF THE ESTIMATOR OF Z

In SIS approach, there are two possible equivalent formulations of the estimators of Z, the first one Ẑ in Eqs. (4)-
(11) and the second one Z̃ given in Eq. (12). This alternative formulation can be also derived as follows. Consider
the following integrals,

Zd =

∫

X d
πd(x1:d)dx1:d ≈ Ẑd =

1

N

N∑

n=1

w
(n)
d , (26)

and ∫

X d
γd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d =

∫

X d

πd(x1:d)

πd−1(x1:d−1)
π̄d−1(x1:d−1)dx1:d, (27)

=
Zd
Zd−1

. (28)

Clearly, we can write
∫

X d
γd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d =

∫

X d

γd(xd|x1:d−1)
qd(xd|x1:d−1)

qd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d,

=

∫

X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d, (29)

where we have set βd(xd|x1:d−1) =
γd(xd|x1:d−1)
qd(xd|x1:d−1)

. Replacing π̄d−1(x1:d−1) with π̂d−1(x1:d−1) given in Eq. (10),
∫

X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̂d−1(x1:d−1)dx1:d =

=

N∑

n=1

w̄
(n)
d−1

∫

X d
βd(xd|x1:d−1)qd(xd|x1:d−1)δ(x1:d−1 − x(n)1:d−1)dx1:d,

=

N∑

n=1

w̄
(n)
d−1

∫

X
βd(xd|x(n)1:d−1)qd(xd|x

(n)
1:d−1)dxd.



Hence, using again Monte Carlo for approximating each integral within the sum, i.e., given N samples x(n)d ∼
qd(xd|x(n)1:d−1), n = 1, . . . , N (one sample for each different qd(·|x(n)1:d−1)), and denoting β(n)d = βd(x

(n)
d |x

(n)
1:d−1), we

obtain
∫

X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̂d−1(x1:d−1)dx1:d =

N∑

n=1

w̄
(n)
d−1β

(n)
d , (30)

=
1

∑N
i=1w

(i)
d−1

N∑

n=1

w
(n)
d−1β

(n)
d ,

=
1

∑N
i=1w

(i)
d−1

N∑

n=1

w
(n)
d ,

=
1
N

∑N
n=1w

(n)
d

1
N

∑N
i=1w

(i)
d−1

=
Ẑd

Ẑd−1
≈ Zd
Zd−1

, (31)

where we have used w̄(n)
d−1 =

w
(n)
d−1∑N

i=1 w
(i)
d−1

, the recursive expression of the weights, w(n)
d = w

(n)
d−1β

(n)
d , and Ẑd is the

estimator in Eq. (26). Finally, we can obtain, setting Ẑ0 = 1,

Z̃ =
D∏

d=1

Ẑd

Ẑd−1
= Ẑ1

Ẑ2

Ẑ1

· · · ẐD−1
ẐD−2

ẐD

ẐD−1
=

D∏

d=1

[
N∑

i=1

w̄d−1(x
(i)
1:d−1)βd(x

(i)
d |x

(i)
1:d−1)

]
≈ Z, (32)

that is exactly the estimator in Eq. (12).

A.1. Application of resampling

Let us consider to approximate the integral in Eq. (30) via importance sampling, assuming in this case to draw N

samples, x(1)1:d,. . ., x(N)
1:d , from qd(xd|x1:d−1)π̂d−1(x1:d−1), hence we can write

∫

X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̂d−1(x1:d−1)dx1:d ≈

1

N

N∑

n=1

β
(n)
d . (33)

Moreover using Eq. (27), we have 1
N

∑N
n=1 β

(n)
d ≈ Zd

Zd−1
.

B. PARTICLE MARGINAL METROPOLIS-HASTINGS (PM-MH) ALGORITHM

The Particle Marginal Metropolis-Hastings (PM-MH) algorithm is a simple extension of the PMH method for the
combined sampling of dynamic and fixed unknown parameters, denoted as x and θ, respectively. Let us consider the
following state space model

{
qd(xd|xd−1, θ),
`d(yd|xd, θ)

(34)

where qd represents a transition probability, and `d is the likelihood function. The parameter θ ∈ Θ is considered also
unknown so that the inference problem consists in inferring (x1:D, θ) given the sequence of received measurements
y1:D. With respect to the notation used in Section 2.1, we have γ1(x1|θ) = `1(y1|x1, θ)q1(x1|θ), and

γd(xd|x1:d−1, θ) = `d(yd|xd, θ)qd(xd|xd−1, θ),



with d = 2, . . . , D. Hence, considering also a prior p(θ) over θ, and x = x1:D, y = y1:D, the complete target is

π̄(x, θ|y) = π̄(x|y, θ)p(θ|y), (35)

= π̄(x|y, θ)p(y|θ)p(θ)
p(y)

, (36)

= π̄(x,y|θ) p(θ)
p(y)

, (37)

=

[
`1(y1|x1, θ)q1(x1|θ)

D∏

d=2

`d(yd|xd, θ)qd(xd|xd−1, θ)
]
p(θ)

p(y)
. (38)

We can evaluate π̄(x,y|θ) ∝ π̄(x|y, θ), it is not an issue using a self-normalized IS approach for approximating
π̄(x|y, θ). However, we cannot evaluate p(θ|y), p(y|θ) and p(y). Let us consider to apply a standard MH method
for sampling from π̄(x, θ|y). We assume possible to draw samples [x, θ] as proposal pdf

q(θ∗,x∗|θk−1) = qθ(θ
∗|θk−1)π̄(x∗|y, θ∗),

where k = 1, . . . ,K is the iteration of the chain and π̄(x|y, θ) is the posterior of x. Assume hypothetically that it is
possible to draw from q(θk,xk|θk−1), we obtain the following acceptance probability

α = 1 ∧ π̄(x∗, θ∗|y)q(θk−1,xk−1|θ∗)
π̄(xk−1, θk−1|y)q(θ∗,x∗|θk−1)

, (39)

= 1 ∧ π̄(x∗, θ∗|y)qθ(θk−1|θ∗)π̄(xk−1|y, θk−1)
π̄(xk−1, θk−1|y)qθ(θ∗|θk−1)π̄(x∗|y, θ∗) . (40)

Then, since π̄(x, θ|y) = π̄(x|y, θ)p(θ|y), we can replace it into the expression above

α = 1 ∧ π̄(x∗|y, θ∗)p(θ∗|y)qθ(θk−1|θ∗)π̄(xk−1|y, θk−1)
π̄(xk−1|y, θk−1)p(θk−1|y)qθ(θ∗|θk−1)π̄(x∗|y, θ∗) , (41)

= 1 ∧ p(θ∗|y)qθ(θk−1|θ∗)
p(θk−1|y)qθ(θ∗|θk−1)

, (42)

= 1 ∧ p(y|θ∗)p(θ∗)qθ(θk−1|θ∗)
p(y|θk−1)p(θk−1)qθ(θ∗|θk−1)

. (43)

The problem is that, in general, we are not able to evaluate the likelihood function

Z(θ) = p(y|θ) =

∫

D
π̄(x,y|θ)dx.

However, we can approximate Z(θ) via importance sampling. Thus, the idea is to use the approximate proposal pdf

q̂(θ∗,x∗|θk−1) = qθ(θ
∗|θk−1)π̂(x∗|y, θ∗),

where π̂ is a particle approximation of π̄ obtained by SIR and, at the same, we get the estimation Ẑ(θ∗). Therefore,
the PM-MH algorithm can be summarized as following:

1. For k = 1, . . . ,K :

(a) Draw θ∗ ∼ qθ(θ|θk−1) and then x∗ ∼ π̂(x|y, θ∗) via SIR.
(b) Set [θk,xk] = [θ∗,x∗] with probability

α = 1 ∧ Ẑ(θ∗)p(θ∗)qθ(θk−1|θ∗)
Ẑ(θk−1)p(θk−1)qθ(θ∗|θk−1)

otherwise set [θk,xk] = [θk−1,xk−1].

Given the observations provided in this work, PM-MH can be seen as a combination of a MH method w.r.t. θ and a
MTM-type method w.r.t. x.



C. INVARIANT DENSITY OF P-MTM

Let us consider two MCMC kernels, KPMH(y|x) and KMTM (z|y) with x,y, z ∈ D ∈ Rdx , corresponding to the
PMH and MTM steps in the P-MTM scheme, respectively. We assume π̄(·) is the invariant density of both chains.
The two kernels have been designed such that

∫

D
KPMH(y|x)π̄(x)dx = π̄(y),

∫

D
KMTM (z|y)π̄(y)dy = π̄(z).

In P-MTM, the kernels KPMH , KMTM are used sequentially. Namely, first a sample is drawn from y′ ∼
KPMH(y|x) and then z′ ∼ KMTM (z|y′). The complete transition probability from z to x is given by

KPMTM (z|x) =

∫

D
KMTM (z|y)KPMH(y|x)dy. (44)

The target π̄ is also invariant w.r.t. KPMTM (z|x) [34, 21, 20]. Indeed, we can write
∫

D
KPMTM (z|x)π̄(x)dx =

=

∫

D

[∫

D
KMTM (z|y)KPMH(y|x)dy

]
π̄(x)dx,

=

∫

D
KMTM (z|y)

[∫

D
KPMH(y|x)π̄(x)dx

]
dy,

=

∫

D
KMTM (z|y)π̄(y)dy,

= π̄(z), (45)

which is precisely the definition of invariant pdf ofKPMTM (z|x). Clearly, we can invert the order of the application
of the kernels, i.e., using first KMTM and then KPMH . Thus, since the two are connected sequentially, also the
intermediate steps are distributed as π̄(z), after a burn-in period.



Table 5. State Dependent PMH (SD-PMH)

1. Choose a initial state x0, the total number of iterations K.

2. For k = 1, . . . ,K:

(a) Using a proposal pdf of type

q(s|xk−1) = q1(s1|x1,k−1)q2(s2|s1, x1:2,k−1) · · · qD(sD|s1:D−1, x1:D,k−1), (46)

we employ SIR (see Section 2.2) for drawing with N particles, x(i), and weighting properly them, {x(i), w
(i)
D )}Ni=1.

The resampling steps are applied at R fixed and pre-established iterations (0 ≤ R ≤ K),

d1 < d2 < . . . < dR.

Thus, we obtain a particle approximation of the measure of target pdf

π̂D(x) =

N∑
i=1

w̄
(i)
D δ(x− x(i)).

Furthermore, we also obtain ẐX in Eq. (11) or Z̃X as in Eq. (12).

(b) Draw x∗ ∼ π̂(x), i.e., choose a particle x∗ = {x(1), . . . ,x(N)} with probability w̄(i)
D , i = 1, ..., N .

(c) DrawN−1 particles z(1), . . . , z(N−1) via SIR using q(z|x∗) as in Eq. (46), applying resampling at the same iterations,
d1 < d2 < . . . < dR, used in the generation of x(i)’s. Moreover, set zN = x∗.

(d) Compute

ẐZ =
1

N

N∑
i=1

ρ
(i)
D .

where ρ(i)D = π(z(i))

q(z(i)|x∗)
, i = 1, . . . , N .

(e) Set xk = x∗ with probability

α = 1 ∧ ẐX

ẐZ
,

otherwise set xk = xk−1.


