An interesting relation between the squares of primes and the number 96 and two conjectures

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make two conjectures based on the observation of an interesting relation between the squares of primes and the number 96 .

Conjecture 1:

If p is a prime greater than or equal to 5, then the sequence $q=p^{\wedge} 2+96 * k$, where k is positive integer, contains an infinity of numbers which are primes or squares of primes.

Example:

```
: for p = 5 are obtained the primes q = 313, 409, 601
    (...) for k = 3, 4, 6 (...) and the squares of
primes q = 11^2, 37^2 (...) for k = 1, 14 (...).
```


Conjecture 2:

If p is a prime greater than or equal to 5, then the sequence $q=p^{\wedge} 2+96 * k$, where k is positive integer, contains an infinity of semiprimes $q=m * n$, where $m<n$, with the following property: the number $n-m+1$ is a prime or a square of a prime.

Example:

```
: for p = 5 are obtained the semiprimes q = 217 = 7*31
    (and 31-7 + 1 = 5^2) for k = 2, q = 505 = 5*101
    (and 101 - 5 + 1 = 97, prime) for k = 5, q = 697 =
    17*41 (and 41 - 17 + 1 = 5^2) for k = 7, q = 793 =
    13*61 (and 61 - 13 + 1 = 7^2) for k = 8, q = 889 =
    7*127 (and 127 - 7 + 1 = 11^2) for k = 9, q = 985 =
    5*197 (and 197 - 5 + 1 = 193, prime) for k = 10, q =
    1081 = 23*47 (and 47 - 23 + 1 = 5^2) for k = 11, q =
    1177 = 11*107 (and 107 - 11 + 1 = 97, prime) for k =
    12, q = 1273 = 19*67 (and 67 - 19 + 1 = 7^2) for k =
    13, q = 1465 = 5*293 (and 293 - 5 + 1 = 17^2) for k
    = 15.
```

Note that, for $p=5$, were obtained for $1 \leq k \leq 15$ only primes, squares of primes and semiprimes with the property mention above.

Taking randomly a prime, id est 233, is obtained:
: for $k=1$, the semiprime $q=329=7 * 47(47-7+1=$ 41);
: for $\mathrm{k}=3$, the prime $\mathrm{q}=521$;
: for $k=4$, the prime $q=617$;
: for $k=5$, the semiprime $q=713=23 * 31(31-23+1=$ 3^2);
: for $k=6$, the prime $q=809$.

Taking randomly another prime, id est 769, is obtained:
: for $k=1$, the semiprime $q=865=5 * 173(173-5+1=$ 13^2); for $k=2$, the square of prime $q=31^{\wedge} 2$;
: for $\mathrm{k}=4$, the prime $\mathrm{q}=1153$;
: for $k=5$, the prime $q=1249$;
: for $k=7$, the semiprime $q=1441=11 * 131(131-11+1$ $=11^{\wedge} 2$).

Conclusion:

It is clear from these examples that the formula $p^{\wedge} 2+$ 96*k, where p is prime and k is positive integer, has the property to generate primes, squares of primes and semiprimes with the property shown.

