A formula that seems to generate easily big numbers that are primes or products of very few primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

The formula $N=\left(p^{\wedge} 4-2 * p^{\wedge} 2+m\right) /(m-1)$, where p is an odd prime and m is a positive integer greater than 1 , seems to generate easily primes or products of very few primes.

Observation:

The formula $N=\left(p^{\wedge} 4-2 * p^{\wedge} 2+m\right) /(m-1)$, where p is an odd prime and m is a positive integer greater than 1 , seems to generate easily primes or products of very few primes.

Examples:

For $m=2$ the formula becomes $N=p^{\wedge} 4-2 * p^{\wedge} 2+2$ and were obtained the following results for the sequence of the first five consecutive primes of the form $10 * k+1$:

```
: for p = 11, N = 14401 prime;
: for p = 31, N = 921601 prime;
: for p = 41, N = 2822401 = 113*24977;
: for p = 61, N = 13838401 = 3313*4177;
: for p = 71, N = 25401601 = 101*251501.
```

For a larger prime of the same form, p = 961752931, is obtained $N=855855567096510789934200845104477377601$, a semiprime with 39 digits.

For $m=3$ the formula becomes $N=\left(p^{\wedge} 4-2 \star p^{\wedge} 2+3\right) / 2$ and were obtained the following results for the sequence of the first five consecutive primes of the form $20 * \mathrm{k}+\mathrm{9}$:
: for $\mathrm{p}=29, \mathrm{~N}=352801=17 * 20753$;
: for $\mathrm{p}=89, \mathrm{~N}=31363201$ prime;
: for $\mathrm{p}=109, \mathrm{~N}=70567201=2659 * 26539$;
: for $\mathrm{p}=149, \mathrm{~N}=246420001$ prime;
: for $p=229, \mathrm{~N}=1374976801=11 * 124997891$.
For $m=4$ the formula becomes $N=\left(p^{\wedge} 4-2 * p^{\wedge} 2+4\right) / 3$ and were obtained the following results for the sequence of the first eight consecutive primes of the form $30 * k+13$:

```
: for p = 13, N = 9409 = 97^2;
: for p = 43, N = 1138369 prime;
: for p = 73, N = 9462529 = 1609*5881;
: for p = 103, N = 37509889 = 43*872323;
: for p = 163, N = 235286209 prime;
: for p = 193, N = 462471169 prime;
: for p = 223, N = 824291329 prime;
: for p = 283, N = 2138029249 prime.
```

For two larger primes of the same form is obtained:

```
: for p = 1299763, N = 951339271160353903881409 prime;
: for p = 1299853, N = 951602794365121103901889 prime.
```

Taking randomly a prime, id est $p=29$, are obtained the following results:

```
: for m = 2, N = 705601, a semiprime;
: for m = 3, N = 352801, a semiprime;
: for m = 4, N = 235201, a semiprime;
: for m = 5, N = 176401, a prime;
: for m = 6, N = 141121, a prime;
: for m = 7, N = 117601, a semiprime;
: for m = 8, N = 100801, a prime;
: for m = 9, N = 88201, a semiprime;
: for m = 10, N = 78401, a prime;
: for m = 11, N = 70561, a semiprime;
: for m = 12, N is not integer;
: for m = 13, N = 58801, a semiprime;
: for m = 14, N is not integer;
: for m = 15, N = 50401, a semiprime;
: for m = 16, N = 47041, a prime;
: for m = 17, N = 44101, a prime (...)
```

