Four conjectures based on the observation of a type of recurrent sequences involving semiprimes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make four conjectures starting from the observation of the following recurrent relations: (($p * q-p) * 2-p) * 2-p) .),$. respectively $(((p * q-q) * 2-q) * 2-q) \ldots)$, where p, q are distinct odd primes.

Observation:

Let a(i) be the general term of the sequence formed in the following way: $\left.\left.a(i)=\left(\left(p^{*} q-p\right) * 2-p\right) * 2-p\right) . ..\right)$ and $b(i)$ be the general term of the sequence formed in the following way: b(i) $=(((p * q-q) * 2-q) * 2-q) . .$.$) ,$ where p, q are distinct odd primes, $p<q$. Very interesting patterns can be observed between a(i) and b(i) in the case of the same semiprime $p^{*} q$ or between the terms of this recurrence relation for different semiprimes:

Let $\mathrm{p} * \mathrm{q}=7 * 13=91$; then:

$$
\begin{array}{ll}
: & a(1)=2 * 91-7=175 ; \\
: & a(2)=2 * 175-7=343 ; \\
: & a(3)=2 * 343-7=679=7 * 97 ; \\
: & a(4)=2 * 679-7=1351=7 * 193 ; \\
: & a(5)=2 * 1351-7=2695 ; \\
: & a(6)=2 * 2695-7=5383=7 * 769 \\
(\ldots) & \\
: & b(1)=2 * 91-13=169 ; \\
: & b(2)=2 * 169-13=325 ; \\
: & b(3)=2 * 325-13=637 ; \\
: & b(4)=2 * 637-13=1261=13 * 97 ; \\
: & b(5)=2 * 1261-13=2509=13 * 193 ; \\
: & b(6)=2 * 2509-13=5005 ; \\
: & b(7)=2 * 5005-13=9997=13 * 769 \\
(\ldots) &
\end{array}
$$

Note that $a(3) / p=b(4) / q=97, a(4) / p=b(5) / q=$ 193 and $a(6) / p=a(7) / q=769$.

Let $\mathrm{p} * \mathrm{q}=11 * 13=143$; then:

$$
\begin{array}{ll}
: & a(1)=2 * 143-11=275 ; \\
: & a(2)=2 * 275-11=539 ;
\end{array}
$$

```
:a(3)=2*539-11=1067=11*97;
:a(4) = 2*1067-11 = 2123 = 11*193;
:a(5) = 2*2123-11 = 4235;
:a(6) = 2*4235-11=8459=11*769;
:a(7) = 2*8459-11=16907;
:a(8) = 2*16907-11 = 33803;
:a(9)=2*33803-11=67595;
:a(10)=2*8459-11=135179=11*12289
(...)
: b(1) = 2*143-13 = 273;
: b (2) = 2*273-13=533 = 13*41;
: b(3) = 2*533-13 = 1053;
: b(4) = 2*1053-13 = 2093;
: b(5) = 2*2093-13 = 4173;
: b(6) = 2*4173-13 = 8333 = 13*641;
: b(7) = 2*8333-13 = 16653;
: b(8) = 2*16653-13 = 33293;
: b (9) = 2*33293-13 = 66573;
: b (10) = 2*66573-13 = 133133;
: b(11) = 2*66573-13 = 266253;
:b(12)=2*266253-13 = 532493 = 13*40961
(...)
```

Note that, in the case of this semiprime, were obtained for $a(i) / p$ the primes obtained for the first semiprime, id est 97, 193, 769, 12289 (which are primes of the form $6 * 2^{\wedge} n+1$, see the sequence A039687 in OEIS) but for b(i)/q other primes, id est 41, 641, 40961 ((which are primes of the form 5*2^n +1 , see the sequence A050526 in OEIS).

Let $\mathrm{p} * \mathrm{q}=7 * 11=77$; then:

```
: a(1) = 2*77 - 7 = 147;
:a(2) = 2*147 - 7 = 287 = 7*41;
:a(3) = 2*287-7 = 567;
:a(4) = 2*567-7 = 1127;
:a(5) = 2*1127-7 = 2247;
:a(6) = 2*2247-7=4487=7*641.
(...)
: b(1) = 2*77 - 11 = 143 then for the following
terms see a(i) in the first example of p*q = 11*13.
```

Let $p * q=193 * 199$; then we obtain, as b(i)/q, the primes 769, 12289 (which are primes of the form 6*2^n +1 , obtained above) but for a(i)/p other set of primes not met before: 397, 3169, 6337 (...). To make things even more complicated, for $p^{*} q=197 * 199$ we obtain, for a(i)/p, the set of primes 397, 3169, 6337 mentioned above but for b(i)/q other set of primes not met before: 3137, 50177 (...), which are primes of the form 49*2^n + 1 (see the sequence A077498 in OEIS). Note also the interesting
thing that 397,3169 and 6337 are all three primes of the form $99{ }^{*} 2^{\wedge} n+1$.

Let $p^{*} q=13 * 233$; then we obtain, as a(i)/p, the primes 929, 59393, which are primes of the form $29{ }^{*} 2^{\wedge} n+1$. Seems amazing how many possible infinite sequences of primes can be obtained starting from a simple recurrence relation and a randomly chosen pair of distinct odd primes.

Conjecture 1:

Let a(i) be the general term of the sequence formed in the following way: $\left.\left.a(i)=\left(\left(p^{*} q-p\right) * 2-p\right) * 2-p\right) . ..\right)$ and $b(i)$ be the general term of the sequence formed in the following way: b(i) $=\left(\left(\left(p^{*} q-q\right) * 2-q\right) * 2-q\right) \ldots$), where p, q are distinct odd primes. Then there exist an infinity of primes of the form a(i)/p as well as an infinity of primes of the form $b(i) / q$ for any pair $[p$, q] .

Conjecture 2:

Let $a(i)$ be the general term of the sequence formed in the following way: $a(i)=(((p * q-p) * 2-p) * 2-p) \ldots)$ and b(i) be the general term of the sequence formed in the following way: b(i) $\left.=\left(\left(\left(p^{*} q-q\right) * 2-q\right) * 2-q\right) \ldots\right)$, where p, q are distinct odd primes. Then there exist an infinity of pairs [p, q] such that the sequence of primes a(i)/p is the same with the sequence of primes b(i)/q.

Conjecture 3:

There exist an infinity of primes, for k positive integer, of the form $n * 2^{\wedge} k+1$, for n equal to 5, 6, 29, 49 or 99 (note that this conjecture is a consequence of Conjecture 1 and the examples observed above).

Conjecture 4:

There exist an infinity of positive integers n such that the sequence $n * 2^{\wedge} k+1$, where k is positive integer, contains an infinity of primes.

