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Abstract

Standard mathematics involves such notions as infinitely small/large, con-
tinuity and standard division. This mathematics is usually treated as funda-
mental while finite mathematics is treated as inferior. Standard mathematics
has foundational problems (as follows, for example, from Gödel’s incomplete-
ness theorems) but it is usually believed that this is less important than the
fact that it describes many experimental data with high accuracy. We argue
that the situation is the opposite: standard mathematics is only a degenerate
case of finite one in the formal limit when the characteristic of the ring or field
used in finite mathematics goes to infinity. Therefore foundational problems in
standard mathematics are not fundamental.
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The problem of infinities has two major independent aspects:

• Problem 1: Does mathematics involving infinities ensure correct calculations of
all phenomena on classical and quantum levels?

• Problem 2: Can mathematics involving infinities be substantiated as an abstract
science?

Standard mathematics involves such notions as infinitely small/large, con-
tinuity and standard division although in traditional and constructive versions some
of them are treated differently. Historically those notions have arisen from a be-
lief based on everyday experience that any macroscopic object can be divided into
arbitrarily large number of arbitrarily small parts. However, the very existence of el-
ementary particles indicates that those notions have only a limited meaning. Indeed,
we can divide any macroscopic body by ten, million, etc. but when we reach the
level of atoms and elementary particles the division operation loses its meaning and
we cannot obtain arbitrarily small parts. Analogously, in any computer the number
of bits can be only a positive integer and such notions as 1/2 bit, 1/3 bit etc. are
meaningless.
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Those examples show that mathematics involving the set of all rational
numbers has only a limited applicability and using standard mathematics in quantum
physics and computer science is at least unnatural. As a consequence, any description
of macroscopic phenomena using continuity and differentiability can be only approxi-
mate. Water in the ocean can be described by differential equations of hydrodynamics
but this is only an approximation since matter is discrete.

Problem 2) has a long history described in numerous textbooks and mono-
graphs (see e.g. Ref. [1]). As shown by Russell and other mathematicians, the Cantor
set theory contains several fundamental paradoxes. To avoid them several axiomatic
set theories have been proposed and the most known of them is the ZFC theory de-
veloped by Zermelo and Fraenkel. However, the consistency of ZFC cannot be proven
within ZFC itself and it was shown that the continuum hypothesis is independent of
ZFC. Gödel’s incompleteness theorems state that no system of axioms can ensure that
all facts about natural numbers can be proven and the system of axioms in traditional
mathematics cannot demonstrate its own consistency.

In constructive mathematics proposed by Brouwer there is no law of the
excluded middle and it is required that any proof of existence be algorithmic. That
is why constructive mathematics is treated such that, at least in principle, it can be
implemented on a computer. Here ”in principle” means that the number of steps
might be not finite. With this meaning constructive mathematics, as well as tradi-
tional one, assumes that one can operate with any desired amount of resources and
it is theoretically possible to consider an idealized case when a computer can operate
with any desirable number of bits.

The absolute majority of mathematicians prefer the traditional version.
Physics is also based only on traditional mathematics. Hilbert was a strong opponent
of constructive mathematics. He said: ”No one shall expel us from the paradise that
Cantor has created for us” and ”Taking the principle of excluded middle from the
mathematician would be the same, say, as proscribing the telescope to the astronomer
or to the boxer the use of his fists”.

Some well known results of traditional mathematics are counterintuitive.
For example, since the mapping tgx from (−π/2, π/2) to (−∞,∞) is a bijection,
those intervals have the same number of elements although the former is a part of
the latter. Another example is Hilbert’s Grand Hotel paradox (see e.g. Wikipedia).
However, in traditional mathematics those examples are not treated as contradictory.

Let us look at mathematics from the point of view of philosophy of quan-
tum theory according to which there should be no statements accepted without proof
(i.e. axioms). The theory should contain only those statements that can be verified,
where by ”verified” physicists mean an experiment involving only a finite number of
steps.

Let us pose a problem of whether 10+20 equals 30. Then we should
describe an experiment which should solve this problem. Any computer can operate
only with a finite number of bits and can perform calculations only modulo some
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number p. Say p = 40, then the experiment will confirm that 10+20=30 while if
p = 25 then we will get that 10+20=5. So the statements that 10+20=30 and even
that 2 · 2 = 4 are ambiguous because they do not contain information on how they
should be verified. We believe the following observation is very important: although
standard mathematics is a part of our everyday life, people typically do not realize
that standard mathematics is implicitly based on the assumption that one can have
any desirable amount of resources. So standard mathematics (including traditional
and constructive versions) is based on the implicit assumption that we can consider
a formal limit p → ∞ and the correctness of the limit can be substantiated.

While Gödel’s works on the incompleteness theorems are written in highly
technical terms of mathematical logics, the fact that standard mathematics has foun-
dational problems is clear from the philosophy of quantum theory. For instance, the
first incompleteness theorem says that not all facts about natural numbers can be
proven. However, from the philosophy of quantum theory this seems to be clear be-
cause if the number of numbers is not finite then we cannot verify that a+ b = b+ a
for any a and b.

The famous Kronecker’s expression is: ”God made the natural numbers,
all else is the work of man”. However only addition and multiplication are always
possible in the set of natural numbers. In order to make addition invertible we
introduce negative integers. However, they do not have a direct physical meaning
(e.g. the phrases ”I have -2 apples” or ”this computer has -100 bits of memory” are
meaningless). Their only goal is to get the ring of integers Z. The next step is the
transition to the field of rational numbers Q and analogous remarks can be made
about division.

However, if we consider only a set Fp of p numbers 0, 1, 2, ... p− 1 where
p is prime and the operations are defined as usual but modulo p then we get a field
without adding new elements. Note that in Fp we can formally use the minus sign
because, by definition, b = −a if a + b = 0 in Fp. For example, −1 = p − 1 and
−(p− 1)/2 = (p+ 1)/2.

Consider first Fp as a ring of elements {0,±i} (i = 1, ...(p − 1)/2). Let
f be a function from Fp to Z such that f(a) in Z has the same notation in Z as
a in Fp. Then for elements a ∈ Fp such that |f(a)| ≪ p, addition, subtraction
and multiplication are the same as in Z. In other words, for such elements we do
not feel the existence of p. Indeed, let F̃p be a subset of elements a ∈ Fp such
that |f(a)| < [(p − 1)/2]1/2. Then for a1, a2 ∈ F̃p, f(a1 + a2) = f(a1) + f(a2) and
f(a1a2) = f(a1)f(a2) which shows that if Fp is treated as a ring then f is a local
isomorphism between Fp and Z.

As explained in textbooks, both Fp and Z are cyclic groups with respect
to addition. However, an important difference between Fp and Z is that only the
former has a property which we call strong cyclicity: for any fixed a ∈ Fp any element
of Fp distinct from a can be obtained from a by successively adding 1. In particular,
by successively adding 1 to a ”positive” element a ∈ Fp (i.e. such that f(a) > 0)
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we will get all ”positive” elements, all ”negative” elements (such that f(b) < 0) and
zero. As noted below, in particle physics the presence or absence of strong cyclicity
plays an important role.

The above remarks show that if elements of Z are depicted as integer
points on the x axis of the plane xy then it is natural to depict the elements of Fp as
points of the circumference in Fig. 1 such that the distance between the neighboring
elements of Fp is unity.

Figure 1: Relationship between Fp and Z

When p increases, the bigger and bigger part of F̃p becomes the same as Z.
Hence we can conclude that Z can be treated as a degenerate case of Fp in the formal
limit p → ∞ because in this limit operations modulo p disappear and strong cyclicity
is broken. Therefore, at the level of rings standard mathematics is a degenerate case
of finite one when formally p → ∞.

In standard mathematics there exists a similar construction called stereo-
graphic projection. We again consider the xy plane and treat the points of the x axis
as elements of the set of real numbers R. Let C be a circumference with the center at
(0, R) and the radius R. This set has a property similar to strong cyclicity because
if we take a point b ∈ C then any other point can be obtained from b by a rotation
by an angle ϕ ∈ [0, 2π) and after rotating by 2π we will come back to b.

Let a = (0, 2R) be the North pole of C and f(x, y) be a function from
C − a to R such that the line containing the points a and (x, y) crosses the x axis
at X = f(x, y). Let α ∈ (−π/2, π/2) be the angle between this line and the line
connecting a with the origin. Then X = 2Rtgα, x = Rsin(2α) and y = 2Rsin2α.
Then the stereographic projection is a bijection between C − a and R.
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A natural distance between the elements X1, X2 ∈ R is |X1 −X2| while a
natural distance in C is such that if two points are characterized by polar angles ϕ1

and ϕ2 then the distance between them is R ·min(|ϕ1 − ϕ2|, (2π − |ϕ1 − ϕ2|)). The
map f does not conserve distances but in a vicinity of C near the origin such that
|α| < α0, α0 ≪ 1 the distance between any two points is approximately the same as
the distance between their images in R. In the formal limit (Rα0 → ∞, Rα3

0
→ 0)

this vicinity becomes R and strong cyclicity is broken. The situation is similar to the
transition from Fp to Z, and R can be treated as a degenerate case of C in this limit.

The above constructions have a well-known historical analogy. For many
years people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature. Analogously one might think that the set of numbers describing physics
has a ”curvature” defined by a very large number p but we do not notice it when we
deal only with numbers much less than p.

One might argue that introducing a new fundamental constant p is not
justified. However, the history of physics tells us that new theories arise when a
parameter, which in the old theory was treated as infinitely small or infinitely large,
becomes finite. For example, from the point of view of classical nonrelativistic physics,
the velocity of light c is infinitely large and the Planck constant h̄ is infinitely small
but in relativistic quantum theory they are finite. Therefore, it is natural to think
that in the future quantum physics the quantity p will be not infinitely large but
finite. A problem arises whether p is a constant or is different in various periods of
time. In view of the problem of time in quantum theory, an extremely interesting
scenario is that the world time is defined by p.

At the level of fields, finite and standard mathematics already considerably
differ each other. For example, 1/2 in Fp equals (p+1)/2, i.e. a very large number if
p is large. However, this does not mean that mathematics modulo p cannot describe
physics because spaces in quantum theory are projective. In Refs. [2, 3] we have
proposed an approach called GFQT where quantum theory is based on a Galois field
with characteristic p. It has been shown that in the formal limit p → ∞ GFQT
recovers predictions of standard continuous theory. Then the fact that standard
mathematics describes many experiments with a high accuracy is a consequence of
the fact that in real life the number p is very large.

In addition, GFQT gives a new look at many fundamental problems in
physics (see the discussion in Refs. [4, 5]). We consider two examples which are
strong indications that nature is described by finite mathematics.

A well-known fact of particle physics is that a particle and its antiparticle
have equal masses. This follows from the requirement that their irreducible repre-
sentations (IRs) should be combined into a local field satisfying a covariant equation
(e.g. the Dirac equation). A question arises that if locality is only approximate then
the masses of a particle and its antiparticle remain equal or can differ each other?
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This question is legitimate because, since local fields are described by non-unitary
representations, their probabilistic interpretation is problematic.

In standard theory, IRs corresponding to particles are constructed from
a state where energy=mass. When representation operators act on this state the
energy can only increase and we get the spectrum of energies in the range [mass,∞).
In mathematics such IRs are called IRs with the minimum weight. Analogously, in
the case of antiparticles we start from a state where energy=-mass. Then the energy
can only decrease and we get an IR with the maximum weight where the spectrum
of energies is in the range (−∞,−mass]. Hence in standard theory a particle and
its antiparticle are described by different IRs and the equality of their masses is a
consequence of additional requirements.

In GFQT we also start from a state where energy=mass and gradually
increase the energy by acting by representation operators on this state. However, in
such a way we are moving not along a straight line but along the field Fp in Fig. 1.
Then sooner or later we will arrive at the point where energy=-mass which shows
that a finite field analog of an IR with the minimum weight is simultaneously a finite
field analog of an IR with the maximum weight. Therefore in GFQT a particle and
its antiparticle belong to the same IR and have the same masses because the field Fp

is finite and has the property of strong cyclicity. This effect cannot be reproduced in
standard theory where there are no operations modulo p.

Another striking example is that gravity can be treated not as an inter-
action but simply as a manifestation of the fact that nature is described by a Galois
field of characteristic p. In this approach the gravitational constant G is not a pa-
rameter taken from the outside (e.g. from the condition that theory should describe
experiment) but a quantity which should be calculated. The actual calculation is
problematic but reasonable qualitative arguments show [5] that G is proportional to
1/lnp. Therefore, gravity is a consequence of the finiteness of nature and disappears
in the limit p → ∞. A qualitative estimation based on additional assumptions gives
that p is a huge number of the order of exp(1080).

Also as noted above, in quantum theory division has a limited applicability.
This might be an indication that (as Metod Saniga pointed out), in the spirit of Refs.
[6, 7, 8], the ultimate quantum theory will be based even on a finite ring and not a
field.

The above discussion indicates that the answer to Problem 1 is probably
negative. However, regardless of whether or not this is the case, Problem 2 still
remains. The absolute majority of physicists and mathematicians think that standard
mathematics is fundamental while finite one is inferior. Typical reasons are that
standard mathematics contains more numbers than finite one and that the whole
history of mankind has proven that standard mathematics describes reality with an
unprecedented accuracy. For those reasons, the fact that standard mathematics has
foundational problems is usually treated as less important.

However, any realistic calculations can involve only a finite number of bits
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and any experiment has a finite accuracy. As explained above, in the formal limit p →
∞ operations modulo p disappear and strong cyclicity is broken. Therefore standard
mathematics can be treated as a degenerate case of finite one in the formal limit
p → ∞. This fact is obvious and probably it has been overlooked by mathematicians.

An illusion of continuity arises because p is very large. Standard mathe-
matics might be treated only as a technique which in many cases describes reality with
a high accuracy while the fact that this mathematics has foundational problems in-
deed does not have a fundamental role. The philosophy of Brouwer, Cantor, Fraenkel,
Gödel, Hilbert, Kronecker, Russell, Zermelo and other great mathematicians work-
ing on foundation of standard mathematics was based on macroscopic experience in
which the notions of infinitely small, infinitely large, continuity and standard divi-
sion are natural. However, as noted above, those notions contradict the existence of
elementary particles and are not natural in quantum theory.
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