Compositeness Test for Repunit Numbers

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

September 02, 2014

Abstract

Conjectured polynomial time compositeness test for numbers of the form $\left(10^{p}-1\right) / 9$ is introduced .

Keywords: Compositeness test , Polynomial time , Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In 2010 Pedro Berrizbeitia ,Florian Luca and Ray Melham provided polynomial time compositeness test for numbers of the form $\left(2^{p}+1\right) / 3$, see Theorem 2 in [1]. In this note I present polynomial time conpositeness test for numbers of the form $\left(10^{p}-1\right) / 9$ that is similar to the Berrizbeitia-Luca-Melham test .

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $R=\left(10^{p}-1\right) / 9$ such that p is an odd prime .

$$
\begin{aligned}
& \text { Let } S_{i}=P_{10}\left(S_{i-1}\right) \text { with } S_{0}=P_{5}(6) \text {, thus } \\
& \text { If } R \text { is prime then } S_{p-1} \equiv P_{5}(6)(\bmod R)
\end{aligned}
$$

References

[1] Pedro Berrizbeitia ,Florian Luca ,Ray Melham , "On a Compositeness Test for $\left(2^{p}+1\right) / 3$ ", Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.7 .

