Conjectured Compositeness Tests for Specific Classes of $k \cdot 10^{n} \pm c$

Predrag Terzić

Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 31, 2014

Abstract

Conjectured polynomial time compositeness tests for numbers of the form $k \cdot 10^{n}-c$ and $k \cdot 10^{n}+c$ are introduced.

Keywords: Compositeness test, Polynomial time, Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In 2010 Pedro Berrizbeitia ,Florian Luca and Ray Melham provided polynomial time compositeness test for numbers of the form $\left(2^{p}+1\right) / 3$, see Theorem 2 in [1] . In this note I present polynomial time conpositeness tests for numbers of the form $k \cdot 10^{n} \pm c$ that are similar to the Berrizbeitia-Luca-Melham test .

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=k \cdot 10^{n}-c$ such that $n>2 c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$

$$
\begin{aligned}
& \text { Let } S_{i}=P_{10}\left(S_{i-1}\right) \text { with } S_{0}=P_{5 k}\left(P_{5}(6)\right) \text {, thus } \\
& \text { If } N \text { is prime then } S_{n-1} \equiv-P_{5\lfloor c / 2\rfloor}(6)(\bmod N)
\end{aligned}
$$

Conjecture 2.2. Let $N=k \cdot 10^{n}+c$ such that $n>2 c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$
Let $S_{i}=P_{10}\left(S_{i-1}\right)$ with $S_{0}=P_{5 k}\left(P_{5}(6)\right)$, thus
If N is prime then $S_{n-1} \equiv-P_{5\lceil c / 2\rceil}(6)(\bmod N)$
Conjecture 2.3. Let $N=k \cdot 10^{n}-c$ such that $n>2 c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$
Let $S_{i}=P_{10}\left(S_{i-1}\right)$ with $S_{0}=P_{5 k}\left(P_{5}(6)\right)$, thus
If N is prime then $S_{n-1} \equiv P_{5\lceil c / 2\rceil}(6)(\bmod N)$

Conjecture 2.4. Let $N=k \cdot 10^{n}+c$ such that $n>2 c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$

$$
\begin{aligned}
& \text { Let } S_{i}=P_{10}\left(S_{i-1}\right) \text { with } S_{0}=P_{5 k}\left(P_{5}(6)\right) \text {, thus } \\
& \text { If } N \text { is prime then } S_{n-1} \equiv P_{5\lfloor c / 2\rfloor}(6)(\bmod N)
\end{aligned}
$$

References

[1] Pedro Berrizbeitia ,Florian Luca ,Ray Melham , "On a Compositeness Test for $\left(2^{p}+1\right) / 3$ ", Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.7 .

