Conjectured Compositeness Tests for Specific Classes of $k \cdot 10^n \pm c$

Predrag Terzić

Podgorica , Montenegro
e-mail: pedja.terzic@hotmail.com

August 31, 2014

Abstract: Conjectured polynomial time compositeness tests for numbers of the form $k \cdot 10^n - c$ and $k \cdot 10^n + c$ are introduced .

Keywords: Compositeness test, Polynomial time, Prime numbers.

AMS Classification: 11A51.

1 Introduction

In 2010 Pedro Berrizbeitia ,Florian Luca and Ray Melham provided polynomial time compositeness test for numbers of the form $(2^p+1)/3$, see Theorem 2 in [1] . In this note I present polynomial time conpositeness tests for numbers of the form $k\cdot 10^n\pm c$ that are similar to the Berrizbeitia-Luca-Melham test .

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=k\cdot 10^n-c$ such that n>2c , k>0 , c>0 and $c\equiv 3,5\pmod 8$

Let
$$S_i = P_{10}(S_{i-1})$$
 with $S_0 = P_{5k}(P_5(6))$, thus If N is prime then $S_{n-1} \equiv -P_{5|c/2|}(6) \pmod{N}$

Conjecture 2.2. Let $N=k\cdot 10^n+c$ such that n>2c , k>0 , c>0 and $c\equiv 3,5\pmod 8$

Let
$$S_i = P_{10}(S_{i-1})$$
 with $S_0 = P_{5k}(P_5(6))$, thus If N is prime then $S_{n-1} \equiv -P_{5\lceil c/2 \rceil}(6) \pmod{N}$

Conjecture 2.3. Let $N=k\cdot 10^n-c$ such that n>2c , k>0 , c>0 and $c\equiv 1,7\pmod 8$

Let
$$S_i = P_{10}(S_{i-1})$$
 with $S_0 = P_{5k}(P_5(6))$, thus If N is prime then $S_{n-1} \equiv P_{5\lceil c/2 \rceil}(6) \pmod{N}$

Conjecture 2.4. Let
$$N=k\cdot 10^n+c$$
 such that $n>2c$, $k>0$, $c>0$ and $c\equiv 1,7\pmod 8$ Let $S_i=P_{10}(S_{i-1})$ with $S_0=P_{5k}(P_5(6))$, thus If N is prime then $S_{n-1}\equiv P_{5\lfloor c/2\rfloor}(6)\pmod N$

References

[1] Pedro Berrizbeitia , Florian Luca , Ray Melham , "On a Compositeness Test for $(2^p+1)/3$ ", Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.7 .