Three formulas that generate easily certain types of triplets of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I present three formulas, each of them with the following property: starting from a given prime p, are obtained in many cases two other primes, q and r. I met the triplets of primes [p, q, r] obtained with these formulas in the study of Carmichael numbers; the three primes mentioned are often the three prime factors of a 3-Carmichael number.

Note:

To refer to the three formulas easily I will name them the formula alpha, beta or gama and the triplets obtained the triplet alpha, beta or gama.

Formula alpha:

The formula alpha is $30 * a * n-(a * p+a-1)$. The first prime of a triplet alpha is p and the other two ones are obtained giving to n values of integers, under the condition that $a * p+a-1$ is prime.

Examples:
: For $p=11$ and $a=2$ the condition that $a * p+a-1$ is prime is met because $2 * 11+2-1=23$ which is prime; the formula alpha becomes 60*n - 23; it can be seen that for $n=1$ is obtained 47 (prime) and for $n=2$ is obtained 97 (prime) so we have the triplet alpha [11, 47, 97]; also for $n=3$ is obtained 157 (prime) so other two triplets alpha are [11, 47, 157] and [11, 97, 157];
: For $p=7$ and $a=3$ the condition that $a * p+a-1$ is prime is met because $3 * 7+3-1=23$ which is prime; the formula alpha becomes $90 * n-23$; it can be seen that for $n=1$ is obtained 67 (prime) and for $n=2$ is obtained 157 (prime) so we have the triplet alpha $[7,67,157]$; also for $n=4$ is obtained 337 (prime) so other two triplets alpha are $[7,67,337]$ and $[7,157,337]$.

Note: see the sequence A182416 in OEIS for the connection between Carmichael numbers and formula alpha.

Formula beta:

The formula beta is $30 * a * n+(a * p+a-1)$. The first prime of a triplet beta is p and the other two ones are obtained giving to n values of integers, under the condition that $a * p+a-1$ is prime.

Examples:
: For $p=11$ and $a=2$ the condition that $a^{*} p+a-1$ is prime is met because $2 * 11+2-1=23$ which is prime; the formula beta becomes 60*n +23 ; it can be seen that for $n=1$ is obtained 83 (prime) and for n $=4$ is obtained 263 (prime) so we have the triplet beta [11, 83, 263]; also for $n=6$ is obtained 383 (prime) so other two triplets beta are [11, 83, 383] and [11, 263, 383];
: For $\mathrm{p}=19$ and $\mathrm{a}=3$ the condition that $\mathrm{a}^{*} \mathrm{p}+\mathrm{a}-1$ is prime is met because $3 * 19+3-1=59$ which is prime; the formula beta becomes $90 *_{n}+59$ it can be seen that for $n=1$ is obtained 149 (prime) and for $n=2$ is obtained 239 (prime) so we have the triplet beta [59, 149, 239]; also for $n=4$ is obtained 419 (prime) so other two triplets beta are [59, 149, 419] and [59, 239, 419].

Note: see the sequence A182416 in OEIS for the connection between Carmichael numbers and formula beta.

Formula gama:

The formula gama is $2 * p * n-2 * n+p$. The first prime of a triplet gama is p and the other two ones are obtained giving to n values of integers, under the condition that $2 * p-1$ is prime.

Example:
: For $p=7$ the condition that $2 * p-1$ is prime is met; the formula gama becomes $12 * n+7$ for $n=1$ is obtained 19 (prime) and for $n=2$ is obtained 31 so we have the triplet gama [7, 19, 31]; also for $n=3$ is obtained 43 so other two triplets gama are [7, 19, 43] and [7, 31, 43].

Note: see the sequence A182207 in OEIS for the connection between Carmichael numbers and formula gama.

