A new bold conjecture about a way in which any prime can be written

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make a conjecture which states that any prime greater than or equal to 53 can be written at least in one way as a sum of three odd primes, not necessarily distinct, of the same form from the following four ones: $10 k+1,10 k+3,10 k+7$ or $10 k+9$.

Conjecture:

Any prime greater than or equal to 53 can be written at least in one way as a sum of three odd primes, not necessarily distinct, of the same form from the following four ones: $10 k+1,10 k+3,10 k+7$ or $10 k+9$.

Verifying the conjecture:

(For the first few primes greater than or equal to 53)
(Note that we will not show all ways in which a prime can be written in the way mentioned but only one way, enough to confirm the conjecture)

```
: }53=11+11 + 31
: }59=13+23+23
: }\quad61=7+17+37
: }67=19+19 + 29;
: 71 = 17 + 17 + 37;
: 73 = 11 + 31 + 31;
: 79 = 13 + 23 + 43;
: }83=11+31+41
: 89 = 23 + 23 + 23;
: 97 = 19 + 19 + 59;
: 101 = 17 + 17 + 67;
: 103 = 11 + 31 + 61;
: 107 = 19 + 29 + 59;
: 109 = 13 + 13 + 83;
: 113 = 11 + 31 + 71;
: 127 = 19 + 29 + 79;
: 131 = 7 + 17 + 107;
: 137 = 19 + 29 + 89;
: 139 = 13 + 13 + 113;
: 149 = 13 + 23 + 113;
: 151 = 7 + 7 + 137.
```


Conjecture:

There exist an infinity of primes p that can be written as $p=2 * m+n$, where m and n are distinct primes of the form $10 \mathrm{k}+1$.

Conjecture:

There exist an infinity of primes p that can be written as $p=2 * m+n$, where m and n are distinct primes of the form $10 \mathrm{k}+3$.

Conjecture:

There exist an infinity of primes p that can be written as $p=2 * m+n$, where m and n are distinct primes of the form $10 k+7$.

Conjecture:

There exist an infinity of primes p that can be written as $p=2 * m+n$, where m and n are distinct primes of the form $10 \mathrm{k}+9$.

